
adhesive joints mixed mode testing analysis

F.J.P. Chaves

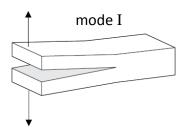
FEUP Faculdade de L.F.M. da Silva

DEMec M.F.S.F. de Moura

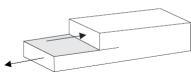
WVirginiaTech D. Dillard

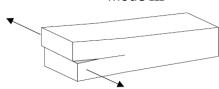
	motivation	3
	fracture modes	4
佳 。	MMB-Mixed Mode Bending	10
值·	DAL – Dual Actuator Load Frame	13
	SPELT	19
	summary envelope for MMB, DAL and SPELT	25
	SPELT – numerical vs. experimental	29
	experimental results	30
	conclusions	33
	acknowledgments	34

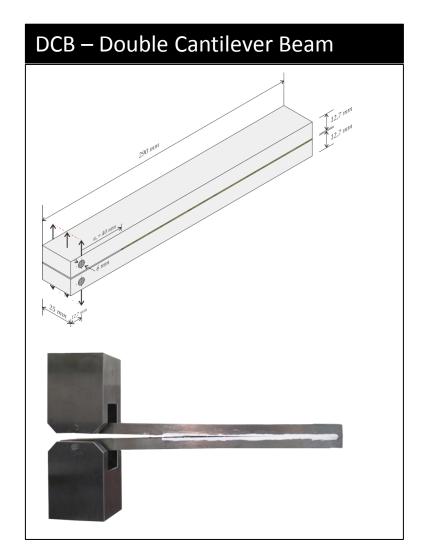
Predict the structure toughness

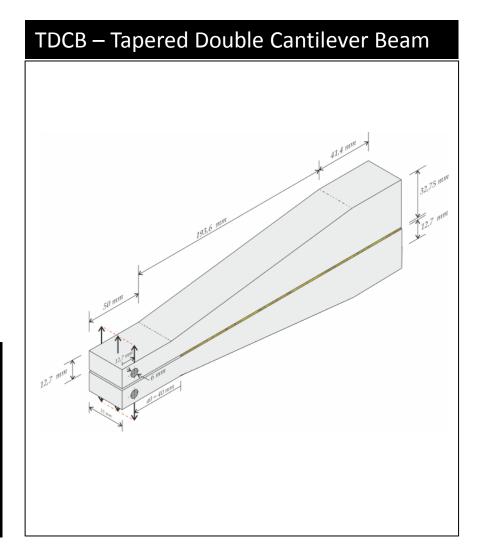

Joint mechanical behavior

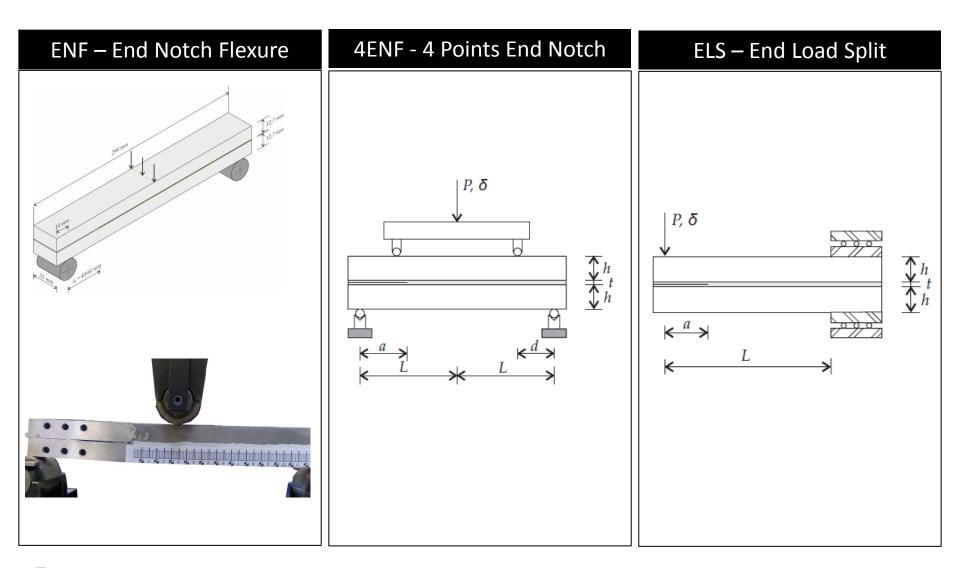
Adhesive fracture energies in Mode I, Mode II (and Mode III)

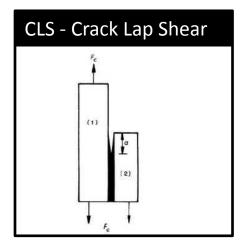


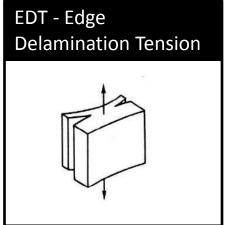

Mode I – opening mode (a tensile stress normal to the plane of the crack);

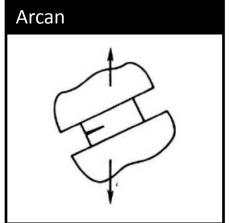

Mode II – sliding mode (a shear stress acting parallel to the plane of the crack and perpendicular to the crack front);

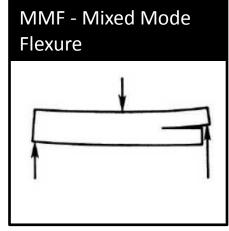


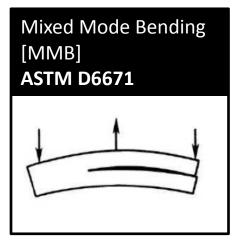

Mode III – tearing mode (a shear stress acting parallel to the plane of the crack and parallel to the crack front)

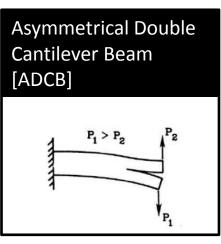


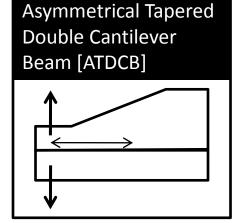


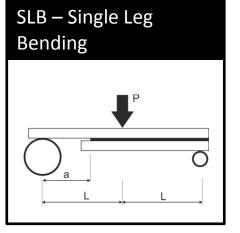


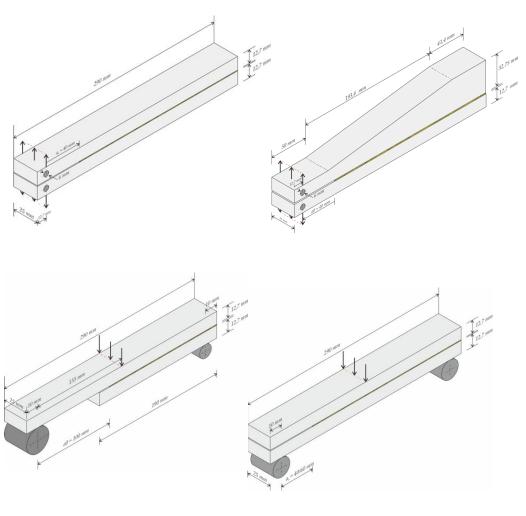












specimens [DCB,ATDCB,SLB, ENF]

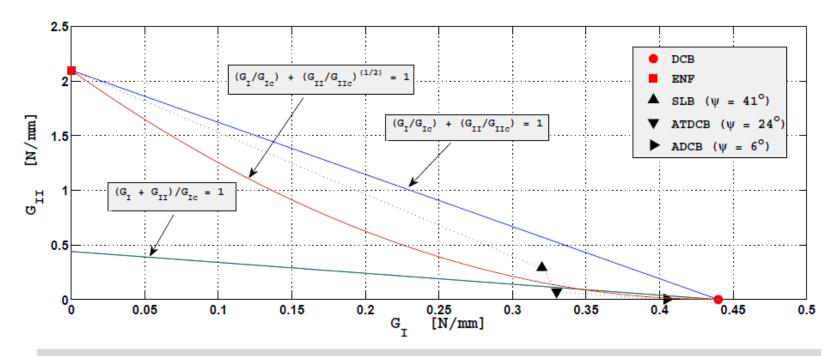
DCB, ATDCB, SLB and ENF specimen geometries.

Bondline thickness = 0.2 mm

Adhesive shear properties using the thick adherend shear test method ISO 11003-2

	2015
Shear modulus G (MPa) Shear yield strength τ_{ya} (MPa) Shear strength τ_{r} (MPa) Shear failure strain γ_{f} (%)	487 ± 77 17.9 ± 1.80 17.9 ± 1.80 43.9 ± 3.40

Steel	adherend	l properties


	Steel	DIN 40CrMnNiMo7.
Young modulus	, <i>E</i> [Gpa]	205
Yield strength,	$\sigma_{\!\scriptscriptstyle y}$ [MPa]	\sim 900
Shear strength,	$\sigma_{\!\!{y}}$ [MPa]	\sim 1000
Strain, $arepsilon_{\!f}$ [%]		\sim 15

Fracture toughness obtained with the conventional testing methods (average and standard deviation).

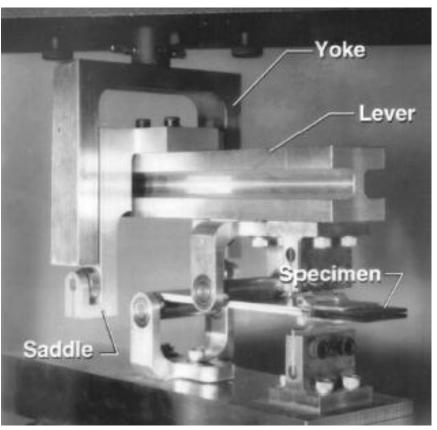
Test type	G _{Ic} (N/mm)	G _{IIc} (N/mm)
DCB+ ENF SLB* ADCB* ATDCB*	0.44 ± 0.05 $ 0.34 \pm 0.06$ 0.41 ± 0.04 0.32 ± 0.04	-2.1 ± 0.21 0.32 ± 0.06 0.004 ± 0.0005 0.07 ± 0.006

⁺ Value corresponding to CBBM

^{*} For these tests, the values indicated correspond to G_{l} and G_{ll} and not G_{lc} and G_{llc} .

Fracture envelope for conventional tests.

Fracture toughness of a structural adhesive under mixed mode loadings

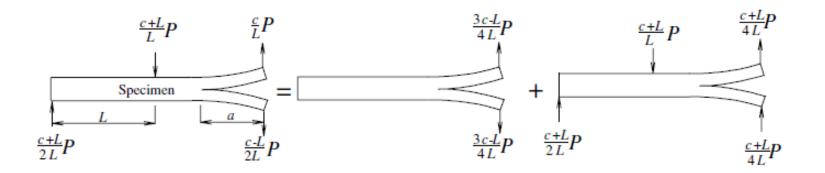

L.F.M. da Silva et al. / Mat.-wiss. u.Werkstofftech. 2011, 42, No. 5

Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites

Designation: D 6671/D 6671M

Modified Mixed Mode Bending by Reeder.

Compliance Based Beam Method applied to MMB


J.M.Q. Oliveira et al. / Composites Science and Technology 67 (2007) 1764-1771

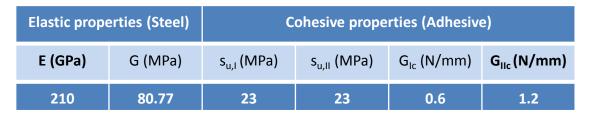
$$G_I = \frac{12a_{eq,I}^2 P_I^2}{B^2 h^3 E_{fI}} + \frac{6P_I^2}{5B^2 hG} \tag{1}$$

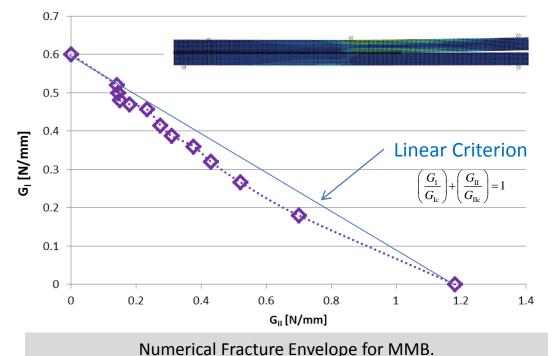
$$G_{II} = \frac{9a_{eq,II}^2 P_{II}^2}{16B^2h^3E_{fII}} \tag{2}$$

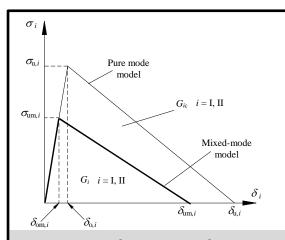
An equivalent crack length ($a_{eq,I}$ and $a_{eq,II}$) can be obtained from the previous equation as a function of the measured current compliance $a_{eq,I} = f(C_I)$ and $a_{eq,II} = f(C_{II})$

The MMB test can be viewed as a combination of the DCB and ENF tests

Schematic representation of loading in the MMB test.

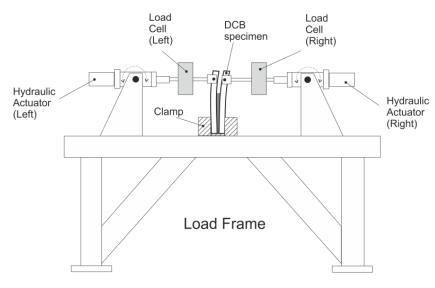

$$P_{\rm I} = \left(\frac{3c - L}{4L}\right)P$$


$$P_{\text{II}} = \left(\frac{c+L}{L}\right)P$$


The specimen was modelled with 11598 plane strain 8-node quadrilateral elements and 257 6-node interface elements with null thickness placed at the mid-plane of the bonded specimen.

Elastic and cohesive properties.

ABAQUS®


The linear softening law for pure and mixed-mode cohesive damage model.

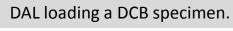
$$\left(\frac{G_{\rm I}}{G_{\rm Ic}}\right) + \left(\frac{G_{\rm II}}{G_{\rm IIc}}\right) = 1 \tag{3}$$

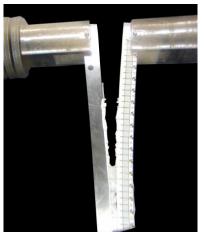
quadratic stress criterion to simulate damage initiation

$$\left(\frac{\sigma_{\rm I}}{\sigma_{\rm u,I}}\right)^2 + \left(\frac{\sigma_{\rm II}}{\sigma_{\rm u,II}}\right)^2 = 1 \tag{4}$$

The Dual Actuator Load Frame (DAL) test is based on a DCB specimen loaded asymmetrically by means of two independent hydraulic actuators

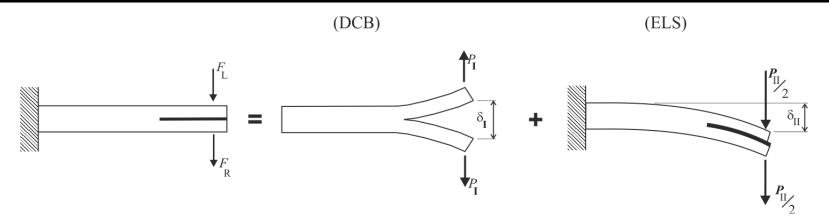
Numerical analysis of the dual actuator load test applied to fracture characterization of bonded joints


F.J.P. Chaves et al. / International Journal of Solids and Structures 48 (2011) 1572-15


$$G_{\rm I} = \frac{6P_{\rm I}^2}{B^2h} \left(\frac{2a_{\rm eI}^2}{h^2E} + \frac{1}{5G} \right)$$

$$G_{\rm II} = \frac{9P_{\rm II}^2 a_{\rm eII}^2}{4B^2 h^3 E}$$

(6)


(5)

Different combinations of applied displacement rates provide different levels of mode ratios, thus allowing an easy definition of the fracture envelope in the G_{\parallel} versus G_{\parallel} space.

The DAL test can be viewed as a combination of the DCB and ELS tests

Schematic representation of loading for the DAL test.

$$P_{\rm I} = \frac{F_{\rm R} - F_{\rm L}}{2}$$

$$P_{\rm II} = F_{\rm R} + F_{\rm L}$$

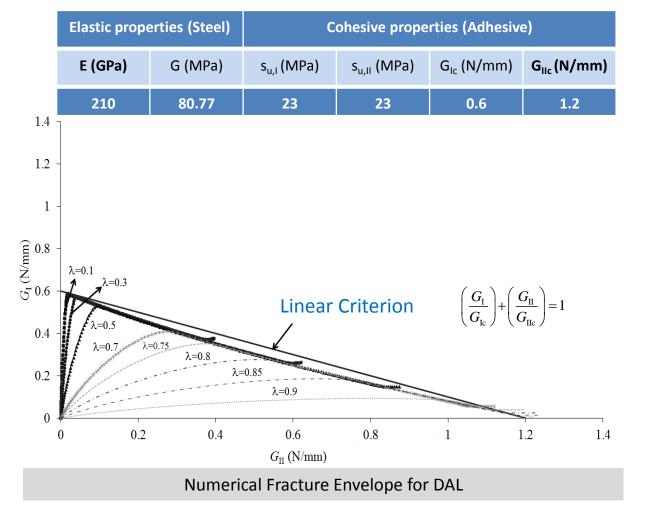
$$\delta_{\rm I} = \delta_{\rm R} - \delta_{\rm L}$$

$$\delta_{\rm II} = \frac{\delta_{\rm R} + \delta_{\rm L}}{2}$$

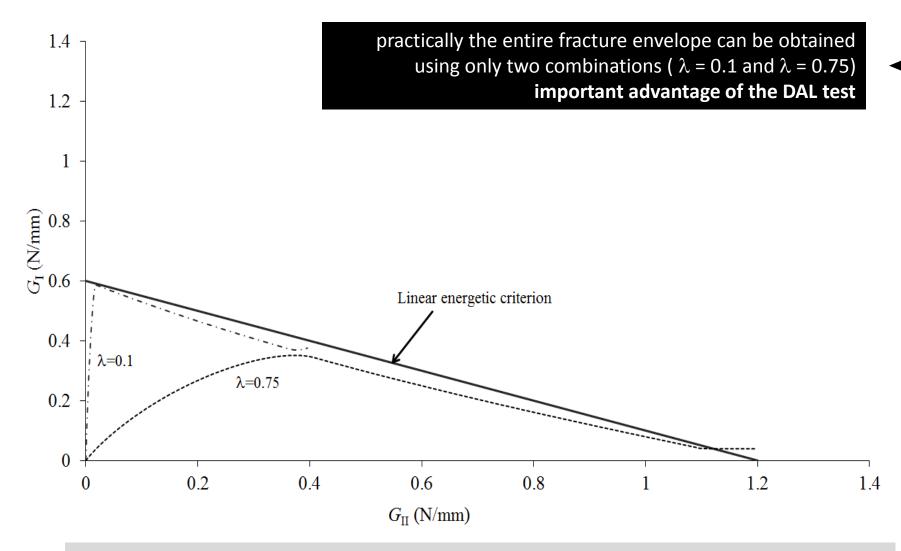
It is useful to define the displacement ratio

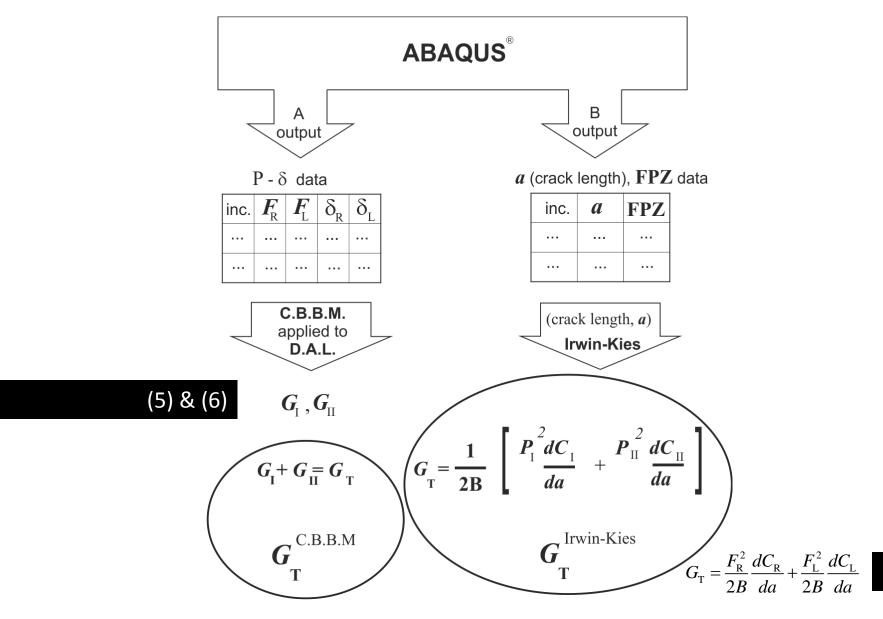
$$\lambda = \delta_{L}/\delta_{R}$$

$$\lambda$$
 = -1 pure mode I

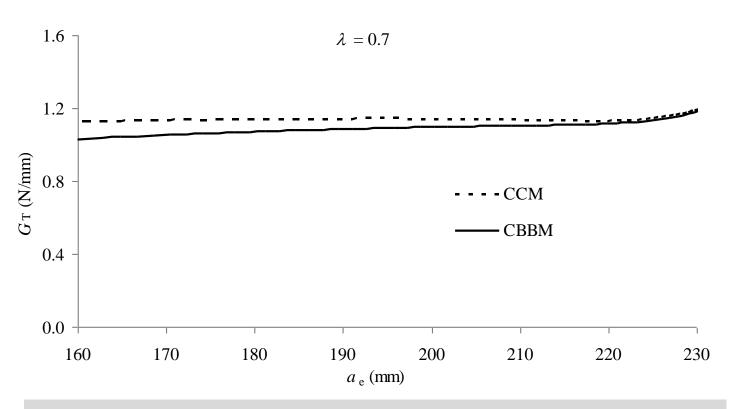

$$\lambda = 1$$
 pure mode II

(9)


The specimen was modelled with 7680 plane strain 8-node quadrilateral elements and 480 6-node interface elements with null thickness placed at the mid-plane of the bonded specimen.



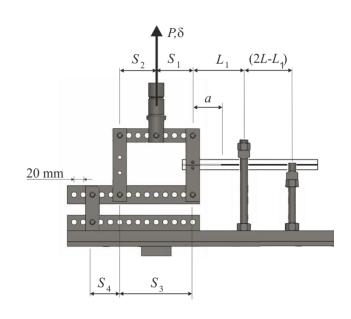
Plot of the $G_{\rm I}$ versus $G_{\rm II}$ strain energies for λ = 0.1 and λ = 0.75.



(10)

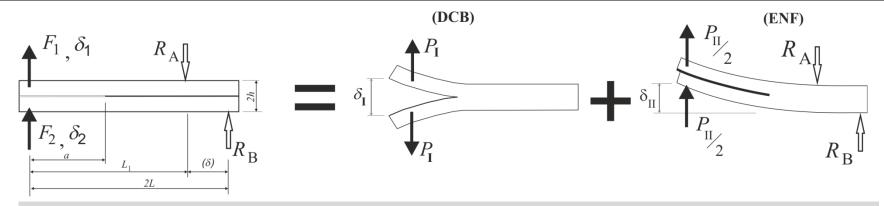
it can be concluded that both methods provide consistent results

agreement increases as the conditions of self-similar crack propagation become more evident.


Plot of the G_T strain energy for $\lambda = 0.7$ obtained with CCM and CBBM.

N.B.: Although the CCM is a function of a, the $a_{\rm e}$ was used to provide better comparison between the two methods.

Mixed-mode testing is being implemented with a specimen load jig similar to the one that Spelt proposed, using DCB specimens used for the pure mode I (DCB) and pure mode II (ENF) and also for mixed-mode DAL



$$G_I = \frac{6 P_I^2}{B^2 h} \left(\frac{2a_{e,I}^2}{h^2 E} + \frac{1}{5G} \right) \tag{11}$$

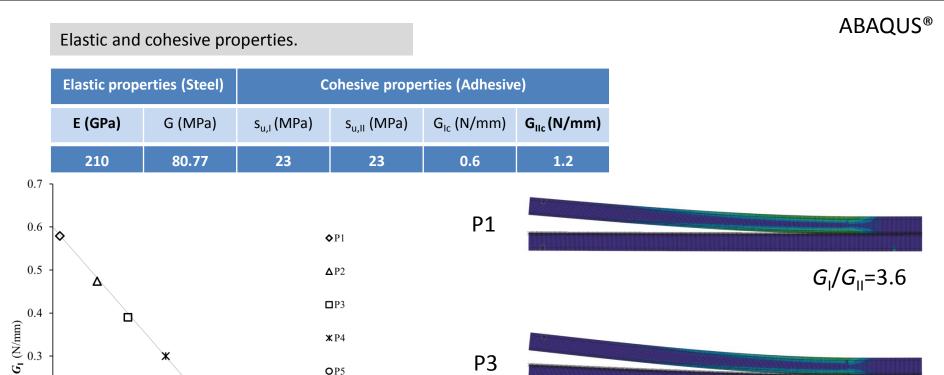
$$G_{II} = \frac{9 P_{II}^2 \alpha_{e,II}^2}{4 R^2 h^3 F} \tag{12}$$

The SPELT test can be viewed as a combination of the DCB and ENF tests

Schematic representation of loading for the SPELT test.

pure mode loading

$$P_I = \frac{F_1 - F_2}{2}$$


$$P_{II} = F_1 + F_2$$

$$\delta_I = \delta_1 - \delta_2$$

$$\delta_I = \frac{\delta_1 + \delta_2}{2}$$

$$R_A = \frac{2 L P_{II}}{2L - L_1}$$
 and $R_B = \frac{P_{II}L_I}{2L - L_1}$ (15)

The specimen was modelled with 3992 plane strain 8-node quadrilateral elements and 382 6node interface elements with null thickness placed at the mid-plane of the bonded specimen.

P3

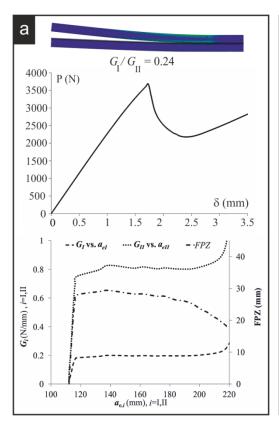
OP5

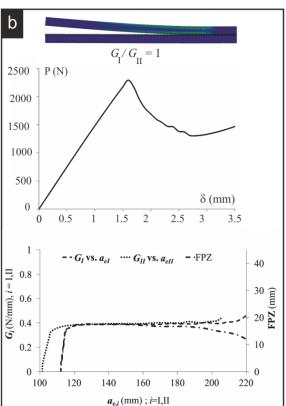
▲ P6

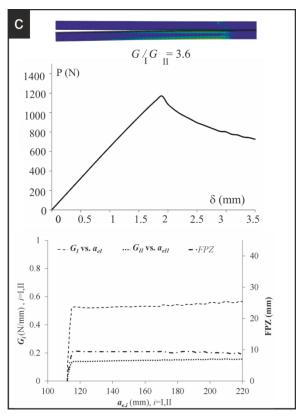
+P7

P5

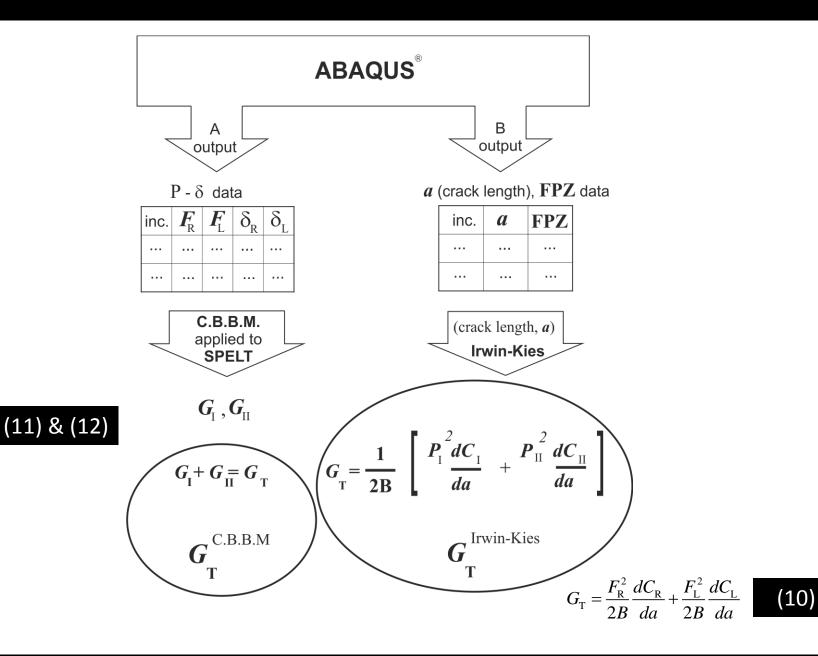
Numerical Fracture Envelope for SPELT

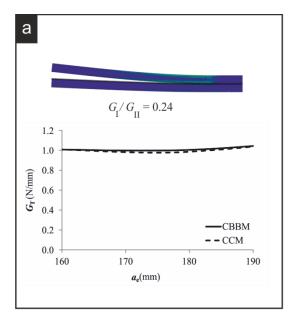

 $G_{\rm I}/G_{\rm II}$ =0.24

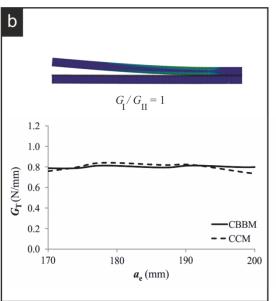

 $G_{\rm I}/G_{\rm II}=1$

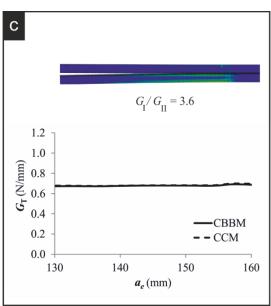


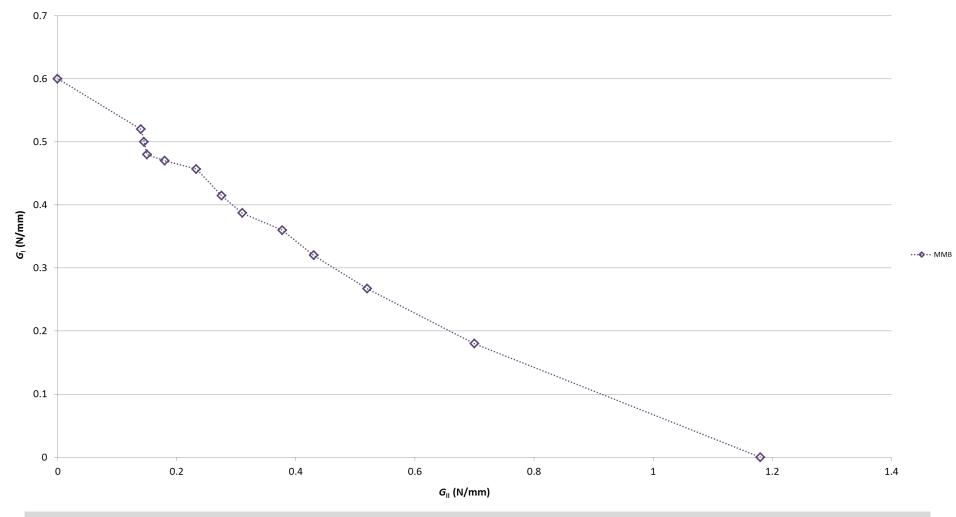
0.2

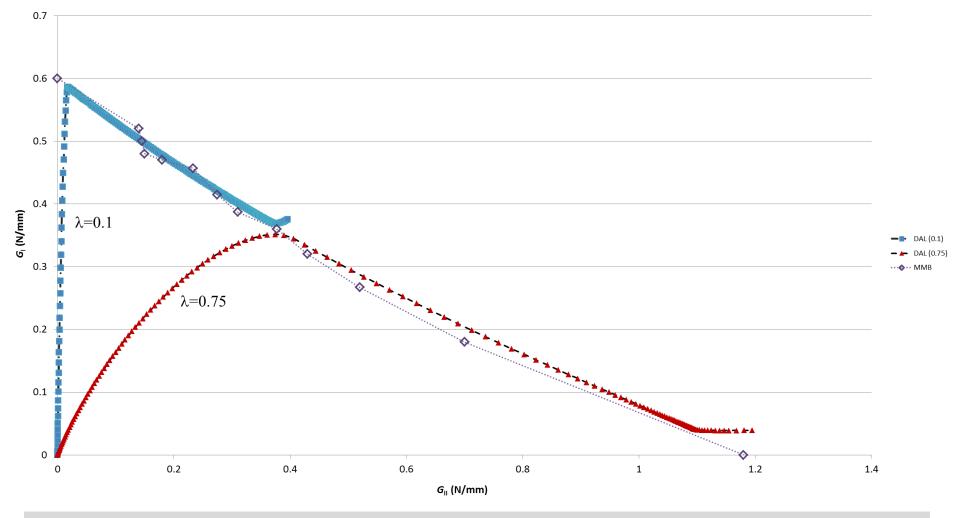

0.1



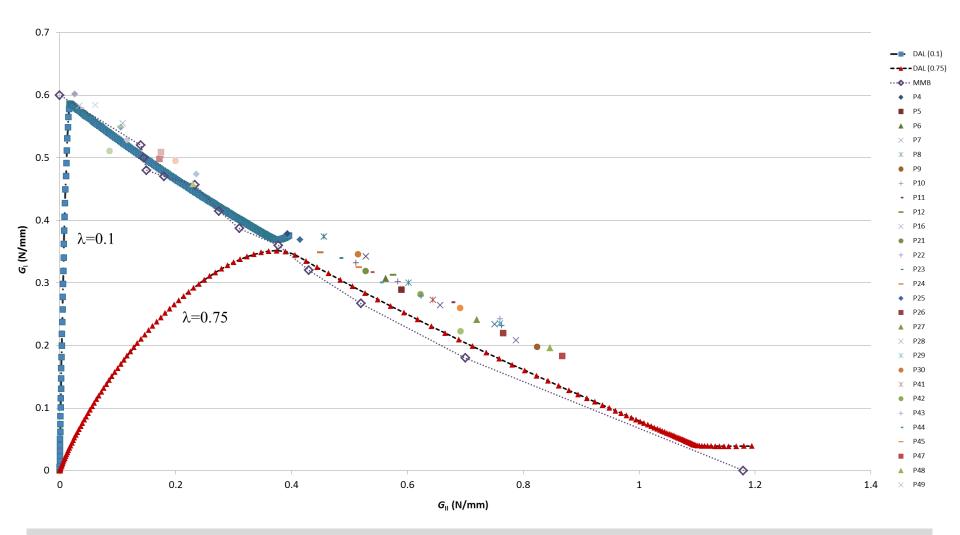



Deformed shapes, load-displacement curves and *R*-curves for three mixed-mode loadings.

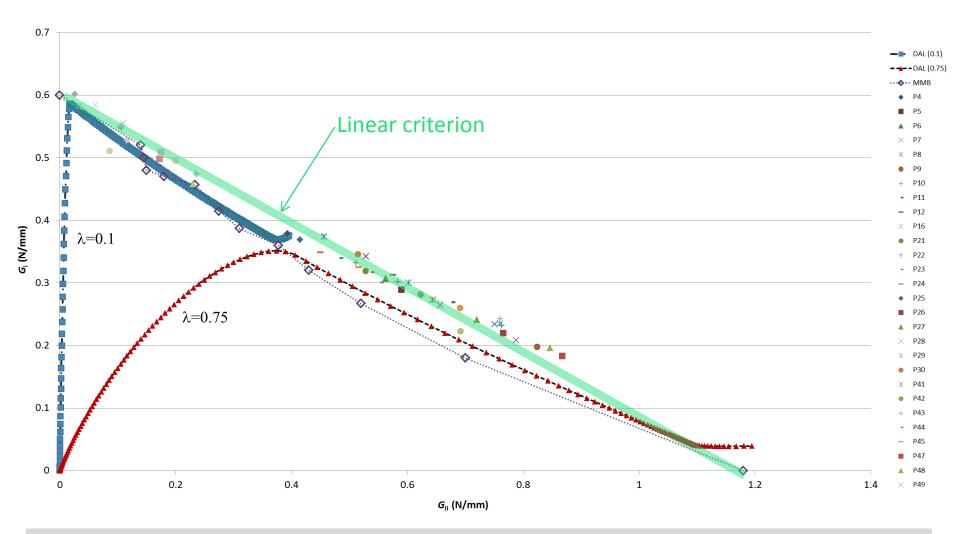




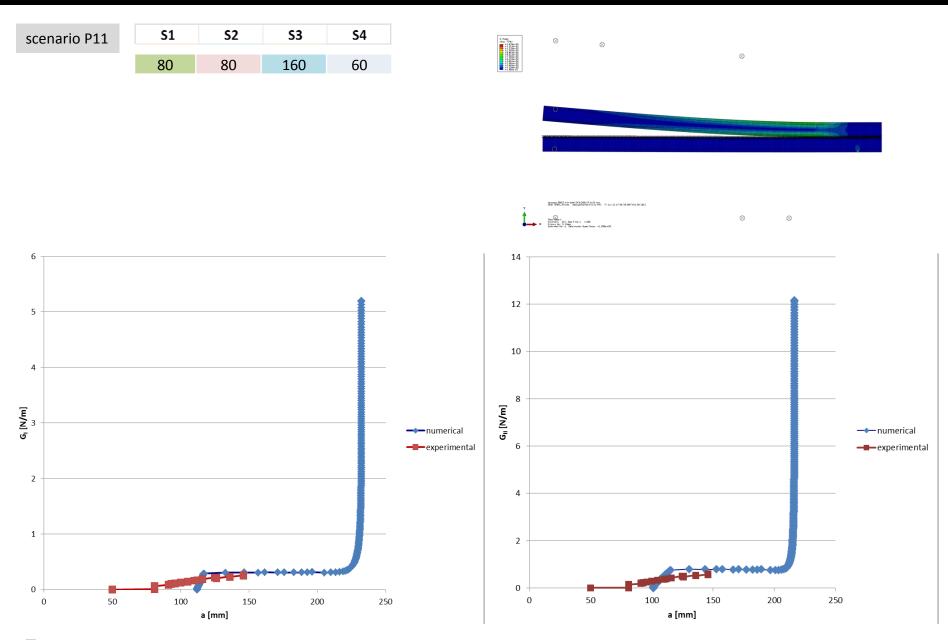
Plot of the G_T = f(a_e) curves obtained by the CCM and the CBBM for G_I/G_{II} =0.24;1 and 3.6.



numerical envelope plot for MMB

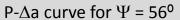


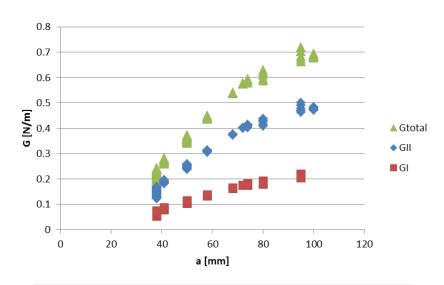
numerical envelope plot for MMB and DAL


numerical envelope plot for MMB and DAL and SPELT



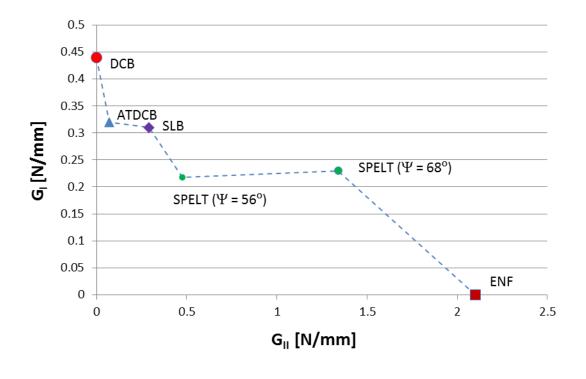
numerical envelope plot for MMB and DAL and SPELT

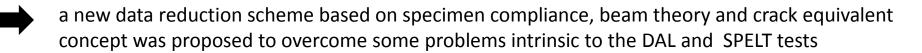




P[N] **∆a** [mm]

P- δ curve for Ψ = 56°




R curve for Ψ = 56°

Araldite® 2015

Experimental envelope (Araldite® 2015)

- the model provides a simple mode partitioning method and does not require crack length monitoring during the test, which can lead to incorrect estimation of fracture energy due to measurement errors
- since the current compliance is used to estimate the equivalent crack length, the method is able to account indirectly for the presence of a non-negligible fracture process zone (very important for ductile adhesives)
 - for pure modes I and II, excellent agreement was achieved with the fracture values inputted in the cohesive model
 - for DAL tests a slight difference relative to the inputted linear energetic criterion was observed in the central region of the G_1 versus G_{11} plot, corresponding to mixed-mode loading, which is attributed to the non self-similar crack propagation conditions that are more pronounced in these cases. The SPELT test has a nearly constant mixed-mode, providing better results for this central region of the fracture envelope.
 - with the DAL test only two combinations of the displacement ratio are sufficient to cover almost all the fracture envelope

conclusions

The authors would like to acknowledge the support of the National Science Foundation (DMR NSF 0415840) in the development of a dual actuator load frame capable of facilitating mixed mode fracture studies.

The authors also acknowledge the financial support of Fundação Luso Americana para o Desenvolvimento (FLAD) through project 314/06, 2007, IDMEC and FEUP.

Thank you.

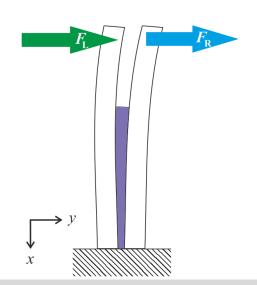
Using Timoshenko beam theory, the strain energy of the specimen due to bending and including shear effects is:

$$U = \int_0^a \frac{M_R^2}{2EI_R} dx + \int_0^a \frac{M_L^2}{2EI_L} dx + \int_a^L \frac{M_T^2}{2EI} dx + \int_0^a \int_{-h/2}^{h/2} \frac{\tau_R^2}{2G} B \, dy dx + \int_0^a \int_{-h/2}^{h/2} \frac{\tau_L^2}{2G} B \, dy dx + \int_a^L \int_{-h}^h \frac{\tau_T^2}{2G} B \, dy dx$$
 (16)

M is the bending momentsubscripts R and L stand for right and left adherends

T refers to the total bonded beam (of thickness 2h)

E is the longitudinal modulus


G is the shear modulus

B is the specimen and bond width

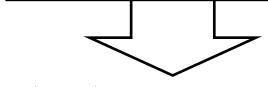
I is the second moment of area of the indicated section

For adherends with same thickness, considered in this analysis, $I = 8I_R = 8I_L$

Schematic representation of loading in the DAL test.

The shear stresses induced by bending are given by:

$$\tau = \frac{3}{2} \frac{V}{Bh} \left(1 - \frac{y^2}{c^2} \right)$$
 (17)


c - beam half-thickness

V - transverse load \rightarrow on each arm for $0 \le x \le a$, and on total bonded beam for $a \le x \le L$

$$\delta = \partial U / \partial P$$

From Castigliano's theorem $\delta = \partial U/\partial P \left\{ \begin{array}{l} {}^{P} \text{ is the applied load} \\ \\ \delta \text{ is the resulting displacement at the same point} \end{array} \right.$

the displacements of the specimen arms can be written as

$$\delta_{\rm L} = \frac{\left(7a^3 + L^3\right)F_{\rm L}}{2Bh^3E} + \frac{(L^3 - a^3)F_{\rm R}}{2Bh^3E} + \frac{3L\left[(F_{\rm L} + F_{\rm R}) + a(F_{\rm L} - F_{\rm R})\right]}{5BhG} \\ \delta_{\rm R} = \frac{\left(7a^3 + L^3\right)F_{\rm R}}{2Bh^3E} + \frac{(L^3 - a^3)F_{\rm L}}{2Bh^3E} + \frac{3L\left[(F_{\rm L} + F_{\rm R}) + a(F_{\rm R} - F_{\rm L})\right]}{5BhG} \\ \delta_{\rm R} = \frac{\left(7a^3 + L^3\right)F_{\rm R}}{2Bh^3E} + \frac{(L^3 - a^3)F_{\rm L}}{2Bh^3E} + \frac{3L\left[(F_{\rm L} + F_{\rm R}) + a(F_{\rm R} - F_{\rm L})\right]}{5BhG} \\ \delta_{\rm R} = \frac{\left(7a^3 + L^3\right)F_{\rm R}}{2Bh^3E} + \frac{(L^3 - a^3)F_{\rm L}}{2Bh^3E} + \frac{3L\left[(F_{\rm L} + F_{\rm R}) + a(F_{\rm R} - F_{\rm L})\right]}{5BhG} \\ \delta_{\rm R} = \frac{\left(7a^3 + L^3\right)F_{\rm R}}{2Bh^3E} + \frac{(L^3 - a^3)F_{\rm L}}{2Bh^3E} + \frac{3L\left[(F_{\rm L} + F_{\rm R}) + a(F_{\rm R} - F_{\rm L})\right]}{5BhG} \\ \delta_{\rm R} = \frac{\left(7a^3 + L^3\right)F_{\rm R}}{2Bh^3E} + \frac{3L\left[(F_{\rm L} + F_{\rm R}) + a(F_{\rm R} - F_{\rm L})\right]}{5BhG} \\ \delta_{\rm R} = \frac{\left(7a^3 + L^3\right)F_{\rm R}}{2Bh^3E} + \frac{3L\left[(F_{\rm L} + F_{\rm R}) + a(F_{\rm R} - F_{\rm L})\right]}{5BhG} \\ \delta_{\rm R} = \frac{\left(7a^3 + L^3\right)F_{\rm R}}{2Bh^3E} + \frac{3L\left[(F_{\rm R} + F_{\rm R}) + a(F_{\rm R} - F_{\rm R})\right]}{5BhG} \\ \delta_{\rm R} = \frac{1}{2Bh^3E} + \frac{3L\left[(F_{\rm R} + F_{\rm R}) + a(F_{\rm R} - F_{\rm R})\right]}{5BhG} \\ \delta_{\rm R} = \frac{1}{2Bh^3E} + \frac{3L\left[(F_{\rm R} + F_{\rm R}) + a(F_{\rm R} - F_{\rm R})\right]}{5BhG} \\ \delta_{\rm R} = \frac{1}{2Bh^3E} + \frac{3L\left[(F_{\rm R} + F_{\rm R}) + a(F_{\rm R} - F_{\rm R})\right]}{5BhG} \\ \delta_{\rm R} = \frac{1}{2Bh^3E} + \frac{3L\left[(F_{\rm R} + F_{\rm R}) + a(F_{\rm R} - F_{\rm R})\right]}{5BhG} \\ \delta_{\rm R} = \frac{1}{2Bh^3E} + \frac{3L\left[(F_{\rm R} + F_{\rm R}) + a(F_{\rm R} - F_{\rm R})\right]}{5BhG} \\ \delta_{\rm R} = \frac{1}{2Bh^3E} + \frac{3L\left[(F_{\rm R} + F_{\rm R}) + a(F_{\rm R} - F_{\rm R})\right]}{5BhG} \\ \delta_{\rm R} = \frac{1}{2Bh^3E} + \frac{3L\left[(F_{\rm R} + F_{\rm R}) + a(F_{\rm R} - F_{\rm R})\right]}{5BhG} \\ \delta_{\rm R} = \frac{1}{2Bh^3E} + \frac{3L\left[(F_{\rm R} + F_{\rm R}) + a(F_{\rm R} - F_{\rm R})\right]}{5BhG}$$

$$\delta_{R} = \frac{\left(7a^{3} + L^{3}\right)F_{R}}{2Bh^{3}E} + \frac{(L^{3} - a^{3})F_{L}}{2Bh^{3}E} + \frac{3L\left[(F_{L} + F_{R}) + a(F_{R} - F_{L})\right]}{5BhG}$$

(18)

formulation

The DAL test can be viewed as a combination of the DCB and ELS tests

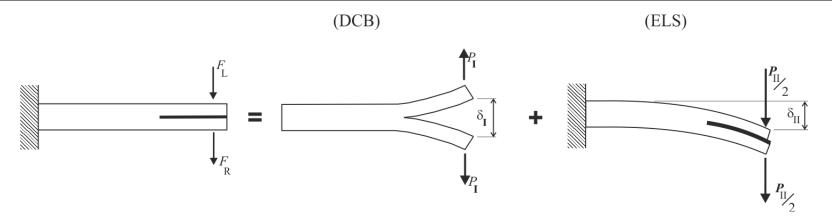
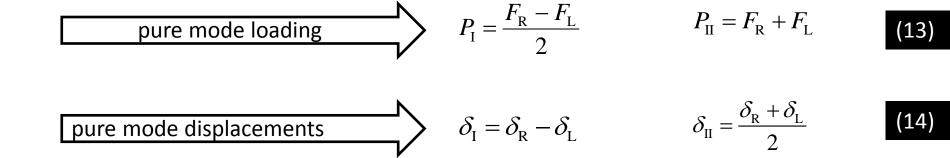



Figure 13. Schematic representation of loading in the DAL test.

$$C_{\rm I} = \frac{\delta_{\rm I}}{P_{\rm I}} = \frac{8a^3}{Bh^3E} + \frac{12a}{5BhG}$$

and

$$C_{\text{II}} = \frac{\delta_{\text{II}}}{P_{\text{II}}} = \frac{3a^3 + L^3}{2Bh^3E} + \frac{3L}{5BhG}$$

(20)

However, stress concentrations, root rotation effects, the presence of the adhesive, load frame flexibility, and the existence of a non-negligible fracture process zone ahead of crack tip during propagation are not included in these equations

To overcome these drawbacks, equivalent crack lengths can be calculated from the current compliances C_{\parallel} and C_{\parallel} (eq. 19 and 20)

$$\alpha a_{\rm eI}^3 + \beta a_{\rm eI} + \gamma = 0$$

$$a_{\rm eI} = \frac{1}{6\alpha} A - \frac{2\beta}{A}$$

$$a_{\text{eII}} = \left[\left(C_{\text{II}} - \frac{3L}{5RhG} \right) \frac{2Bh^3E}{3} - \frac{L^3}{3} \right]^{1/3}$$

$$\alpha = \frac{8}{Rh^3 F}; \quad \beta = \frac{12}{5RhC}; \quad \gamma = -C_{\rm I}$$

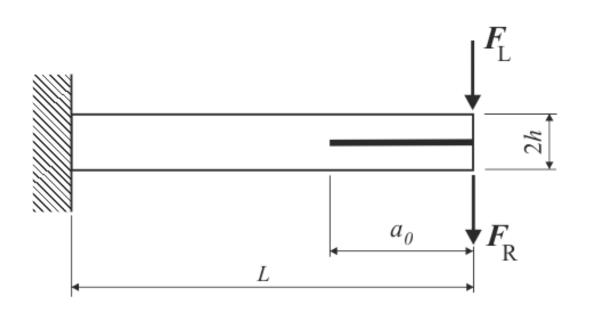
$$A = \left(\left(-108\gamma + 12\sqrt{3\left(\frac{4\beta^3 + 27\gamma^2\alpha}{\alpha}\right)} \right) \alpha^2 \right)^{\frac{1}{3}}$$

The strain energy release rate components can be determined using the Irwin-Kies equation:

$$(23) G = \frac{P^2}{2B} \frac{dC}{da}$$

combined with equation 19
$$C_{\rm I} = \frac{\delta_{\rm I}}{P_{\rm I}} = \frac{8a^3}{Bh^3E} + \frac{12a}{5BhG}$$

$$G_{\rm I} = \frac{6P_{\rm I}^2}{B^2h} \left(\frac{2a_{\rm eI}^2}{h^2E} + \frac{1}{5G}\right)$$


$$G_{\rm I} = \frac{6P_{\rm I}^2}{B^2h} \left(\frac{2a_{\rm eI}^2}{h^2E} + \frac{1}{5G} \right)$$

combined with equation 20 >
$$C_{II} = \frac{\delta_{II}}{P_{II}} = \frac{3a^3 + L^3}{2Bh^3E} + \frac{3L}{5BhG}$$

$$G_{\rm II} = \frac{9P_{\rm II}^2 a_{\rm eII}^2}{4B^2 h^3 E}$$

- The method only requires the data given in the load-displacement (P- δ) curves of the two specimen arms registered during the experimental test.
- Accounts for the Fracture Process Zone (FPZ) effects, since it is based on current specimen compliance which is influenced by the presence of the FPZ.

formulation

 $a_0 = 70 \text{ [mm]}$

B = 25 [mm]

h = 12.7 [mm]

L = 250 [mm]