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Abstract 
 
 
Structural adhesives have been used in many industrial applications throughout the last few 

decades. Despite its traditional nature, the buildings constructor sector has also been using 

structural adhesives. For example, the windowframe PVC industry is evolving rapidly, driven by 

the market growth. Hence it is only logical to search for applications of structural adhesives in 

this emerging industry, avid for better performances in sealing and production quality.  

Having this in mind, this study seeks a new technology for joining the transom to the 

windowframe. At the moment screw fastening is the standard, but in the near future a 

mechanical fastening joint of some complexity will be used.  

 

 

Trying to understand if an adhesive bonded joint will perform as well as the industry standard 

joint techniques is the goal of this investigation. Firstly, there is the need to consider all the 

factors inherent to the window transom joint properties in usage. Then the joint design is 

studied to comply with those factors and perform as well as it is supposed to. One critical step 

is a proper adhesive selection, which will determine the outcome of the joint performance. The 

adherends and loads at stake are taken in consideration throughout this selection process. This 

process is also aided by predicting the joint stress values, using the finite element analysis. 

Tensile tests of the adhesive bulk and single lap joint specimens are done in order to validate 

the adhesive selection and the numerical analysis accuracy. The adhesive’s glass transition 

temperature is also determined to establish its temperature range. 

 

Another major concern is the joint resistance with time as function of weather and load usage 

conditions. To answer this ageing question, an artificial weathering process (60ºC and 80% RH) 

is promoted inside an environmental chamber during 105 days (more than 3 months).   

 

 

Finally a process and cost analysis is done to determine whether this new T-joint adhesive 

bonded proposal is acceptable for industrial purposes and has any economical advantages when 

compared with the other available solutions. 
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Application of adhesive bonding in PVC windows xi 
 

Glossary 
 
 
Cold pressing - A bonding operation in which an assembly is subjected to 

pressure without the application of heat. 

 

FEM – Finite Element Method. Numerical analysis of the stresses and 

displacements as a result of applied forces – usually done using computer. 

 

Handling strength - state in which the resin is hard enough for the joint to be 

handled. 

 

Pot-life - The maximum time from mixing to application of the adhesive 

system. 

 

Setting time - the period of time during which an assembly is subjected to 

heat or pressure, or both, to set or cure the adhesive. 

 

Shelf life  -  Maximum time from mixing the hardener into the resin (done by 

the adhesive manufacturer) to application, of the adhesive. This time is 

dependent on the storage conditions. 

 

Isotropic – Considered to have the same properties distribution in any 

direction. 

 

Resilience – The ability of a material to absorb energy when deformed 

elastically and to return it when unloaded. 

 

Transom – fixed support profile which separates two different window parts 

(sashes). 

 

Young’s Modulus – It is a mechanical propriety that is characteristic of each 

material and relates to its elastic behavior. 

 
 
 
 
 



xii  Application of adhesive bonding in PVC windows 
 

 

Notation  
 
E ► Young’s modulus  

f ► Natural frequency  

G ► Shear modulus  

I ► Second moment of area  

k ► Bending moment factor  

l ► Length  

M ► Bending moment on the adherend at the end of the overlap  

F ► Applied load  

R ► Universal gas constant  

RH ► RelativeHumidty 

T ► Temperature  

t ► Thickness  

T
g
 ► Glass transition temperature  

δ ► Loss angle  

ε ► Tensile strain  

γ ► Shear strain  

j ► Geometric factor  

ν ► Poisson’s ratio  

ρ ► Density  

σ ► Tensile stress  

σ
y
 ► Tensile yield stress  

τ ► Shear stress 
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C h a p t e r  o n e  

INTRODUCTION 

1.1 Industrial design perspective 
 
Throughout an industrial design development, there is the need to incorporate 

new technical solutions and breakthroughs which will either improve or create 

products and new ways to manufacture them. This development leads to 

innovations and increases the knowledge in technological, economical and social 

terms.   
 

Bruno Munari defines  a problem as a need to be satisfied [1]. He also draws a 

possible path that will drive the designer towards a solution as shown in figure 1.  

 

 
 

Figure 1.  Path representation that drives a problem to its solution [1]. 
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1.2  Industrial context  
 

The windowframe industry is growing, mostly to satisfy the customer demand for 

better sealing solutions and thermal efficient buildings. In the past, materials like 

wood, steel and aluminum were used, but the market trend leads to new 

materials, namely composites like PVC reinforced with steel which is leading 

several European construction markets.  

 

In order to build a window or door, there is the need to use tools and equipments 

that are in constant evolution. For PVC windowframe there are specific 

technologies, like welding and fastening [2].  

1.2.1 PVC window manufacturing technology 
 
PVC windowframe technology was developed in the past century, near 1950’s. 

Deceuninck® Plastic Industries has strongly contributed in this technological 

development, starting its PVC-U window profile extrusion in 1965.  

 

 
Figure 2.  Extrusion machine. 

 

In figure 2 an extrusion machine schematic drawing illustrates the production 

process of the PVC profile. This process introduces some surface stress on the 

PVC profiles, as result of the screw, the cylinder and finally the die which will 
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draw the profile geometry. The PVC compound DECOM1010 plays an 

important role in this study because it is the substrate of the studied T-joint. 

 

Building a PVC window is a process which involves some technology, and is 

done following the next steps: 

 

1. Cut the supplied 6 meters PVC profiles and steel reinforcements to the 

specified window size; 

2. Fasten the steel reinforcements inside the PVC profiles; 

3. Open the water and air channels; 

4. Weld window corners in the welding machine (see figure 3), and fasten 

mechanical joints to transoms. 

5.  Clean the excess of material in the corners (figure 4); 

6. Install the rubber sealants and the hardware (locks and hinges) 

gathering the several components; 

7. Install the glass. 
 

 

 

 

 

 

 

 

The welding process is interesting to understand the PVC bonding technology. 

The next figure shows a diagram of the welding process.  

 

 

 
Figure 3.  Welding machine. 

 
Figure 4.  Manual corner cleaning. 
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Figure 5.  PVC window welding technological process schematic [3]. 

 

 

The PVC fusion temperature referred in figure 5 is 240-260ºC and it is 

adjustable in the welding machine as well as the different process times 

(variables of the process). 
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Despite the welding process advantages (figure 6), it is not such a very good 

process for transom bonding. This is due to a major technological manufacture 

complexity and the introduction of surface stresses at the interface and thermal 

stresses when the material is cooling. Therefore mechanical processes were 

developed  like those shown in figures 7 and 8.  

 
Figure 6.  Transom V – welding. Figure 7.  P2090/P2091 Fastening 

connection.  

The fastening connection described in figure 7 uses a T profile (P2090/P2091) 

which is fastened through the PVC profile to the steel reinforcements. This 

fastening method is widely used in the industry. It needs extra finishing for 

optimal sealing with the deposition of silicone. 

The new industry trends are mechanical connections, with structural tightening 

connectors and specific tools to install them. These are good solutions, despite 

being costly when compared to the previous case. As shown in figure 8, first the 

holes are drilled with the help of a proper rig (a), then the structural connector 

(P3270/P3273/P3274) is tightened to the transom extremities (b), after that, 

sealing caps are applied in the screw hole (c), then the transom is adjusted to 

the exterior window frame with the aid of a special tool (P3276) and fastened to 

stay in place (e). 
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Figure 8.  Mechanical connection with P3270/P3273/P3274 [4]. 

 

 
 

 

 

 

 



page
INTRODUCTION 

7 
 

1.2 Definition of problem 
 
Welding is the standard procedure for the corners of windows or doors, but when 

we are talking about the transom, there are some production inefficiencies and 

technological considerations such as the manufacturing process and the residual 

stress. In the last years, mechanical bonding with fasteners was the preferred 

method. New solutions with more sophisticated mechanical joints are now 

available to improve the final solution in terms of mechanical properties, visual 

aspect and ease of production. However, these solutions are costly. 

 

 
 

Figure 9.  Transom in a window. 

 

A transom is a structural element of a windowframe. It is supposed to be resistant 

to imposed forces during its use [5]. These forces are: 
 

a. The supported weight (figure 10 a); 

b. The pressure from the building interior atmosphere and exterior winds 

(figure 10 b); 

c. The force due to closing the window against the transom (figure 10 c). 

 

 
Figure 10.  (a) Weight from the above sash and glass weight; (b) wind or interior 

atmosphere pressure; (c) window closing force. 
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The mechanical behavior of the windowframe must be in accordance with UNE 

85220 standard, which establishes the mechanical resistance of its components. 

 

Another important transom feature is its contribution for the air and water 

impermeability of the window as a sealing element (figure 11). 

 

 
Figure 11.  Windowframe water and air impermeability [4]. 

 

1.4 Solution 
 

This study intends to investigate the possibility of using a structural adhesive for 

the transom bonding in a PVC windowframe.  Instead of using fasteners the joint 

is to be bonded with an adhesive. The manufacture is studied and optimised in 

order to obtain the best joint strength and ease of processing. 

 

The investigation is structured as follows:  

 

i. a survey of structural adhesive technology; 

ii. adhesive selection and testing; 

iii. preliminary transom/windowframe joint tests; 

iv. finite element analysis to predict the stress distribution and 

optimize the joint geometry; 

v. cost analysis. 
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1.5 Historical background 
 
Adhesion is a concept present in humankind life since the very beginnings. 

While studying pre-historical tribal graveyards, archeologists discovered near 

skeletons, clay pottery fragments glued together with resins from tree sap. 

Ancient Babylon temple statues with eye globes glued to eye cavities were also 

discovered with some kind of tar resisting to 6000 years weathering degradation. 

 

A good example of early adhesive use is the Ícarus legend and his wings built 

by his father Dedalus with feathers glued together with wax that melted when 

Ícarus got dangerously near to the Sun.  

 

Paintings and murals from 1500 to 1000 B.C. figure wood gluing. In the 

Egyptian civilization animal origin glues were used to seal the tombs. However 

the first bibliographic reference about adhesives and the art of adhesion dates 

to 200 B.C.  

 

Circa 1 and 1500 A.C., the Greeks and Romans developed an ornamentation 

technique by gluing small noble wood layers. To do so, they used animal origin 

glues, mostly fish glue, egg whites, blood, bones, milk, cheese and some 

vegetables glue. In naval industry Romans used bee wax and tar in order to 

joint wood segments and to obtain waterproof decks. 

 

During the following centuries gluing was a standard procedure in almost every 

object, from furniture to Stradivarius violins. However it was only in the 

eighteenth century (circa 1700) that the first industrial glue factory was settled in 

the Netherlands. 

 

In England, the first patent attributed to an adhesive was about 1750, and 

consisted of fish glue. The following patents were for natural rubber, milk, 

casein and gum glues. In the early years of the twenty century, there were 

innumerous glue factories all over the World. Throughout the First World War, 
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casein adhesives were used to build wood airplanes and by the Second World 

War modified phenolic resins were used to promote structural connection, once 

again in the aeronautic industry.  

 

Despite the fact that the knowledge and common use of adhesives remounts to 

early ages (4000 B.C.), it is just after the twentieth century, when polymers were 

developed following the industrial expansion, that we observe a sustainable, 

science supported, and technically based adhesive developments, enriching the 

knowledge database. This development was also due to the availability of a 

great variety of formulations improving the adhesion performance of the 

adhesives, by controlling mechanical properties, curing time, service 

temperatures and chemical resistance. A good example is the plywood industry 

that boosted the development of phenolic adhesives and phenolic bakelite.  

 

Dr. Harry Cover, in 1942, working for Kodak, produced the cyanoacrylate used 

later in 1951 by Dr. Fred Joyner and Coover in Eastman under the code name 

Eastman n. 910 compound known as super glue (figure 12), which was a 

commercial hit. 

 

These and other adhesives were and are being used in the industry as they 

enable better solutions and newer applications. Nowadays, they are used in the 

automotive, aerospace, aeronautic and other industries, in critical and high 

responsibility applications, due to the specific advantages of structural adhesion. 

Even in medicine, adhesives are used in substitution of common scar sewing to 

close wounds with cyanoacrylate. In dental restoration, light and UV adhesives 

and sealants are used.  At this very moment, Adelaide University in association 

with the CSIRO Molecular Science Company are studying a natural glue from 

Notaden gender Australian frog which is biocompatible and wet resistant (figure 

13) [7]. 

 

A chronological line of adhesive development is shown in the following table. 

 

 

 

 
Figure 12.  Superglue [6]. 

 
Figure 13.  Notaden Frog 

glue [7]. 
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Table 1. Historical development of adhesives and sealants. 

 

Approximate decade of commercial 
availability Adhesive 

  
Glue from animal bones 
Fish glue Pre 1910 
Vegetable adhesives 

  
Phenol-formaldehyde 1910 Casein glues 

  
Cellulose ester 
Alkyd Resin 
Cyclized rubber in adhesives 
Polychloroprene (Neoprene) 

1920 

Soybean adhesives 
  

Urea-formaldehyde 
Pressure sensitive tapes 
Phenolic resin adhesive films 1930 

Polyvinyl acetate wood glues 
  

Nitrile-phenolic 
Chlorinated rubber 
Melamine formaldehyde 
Vinyl-phenolic 
Acrylic 

1940 

Polyurethanes 
  

Epoxies 
Cyanoacrylates 
Anaerobics 1950 

Epoxy alloys 
  

Polyimide 
Polybenzimidazole 1960 
Polyquinoxaline 

  
Second-generation acrylic 
Acrylic pressure sensitive 1970 
Structural polyurethanes 

  
Tougheners for thermoset resins 
Waterborne epoxies 
Waterborne contact adhesives 
Formable and foamed hot melts 

1980 

Polyaromatic High temperature resins 
  

Polyurethane modified epoxy 
Curable hot melts 1990 
UV and light cure systems 

  
 

 

 



page 
12 

INTRODUCTION 

 

 

1.6 Adhesive Market 
 
In 1995 the adhesive market represented about 26 billion dollars and was 

growing 3% every year (8-9% in emergent Asiatic markets). 

 

The market segmentation is represented in the following figures [8]. General 

purpose adhesives represent the major part of the market (51%), followed by 

binders, hot melts and engineering adhesives. Figure 14 shows that 

“packaging” and industrial assembly are the two leading end-use markets for 

adhesives, followed closely by wood and its related products. 

 

 

Geographically, the market distribution was analysed in 2000 by the 

ChemQuest Group and is distributed as shown in figure 16. Europe and 

U.S.A are the two leading markets for adhesives. Recently the Asian market 

is becoming more relevant because of the Chinese industrial booming. 

 

 

 

 

 
Figure 14.  Leading Adhesives and Sealants End-Use Markets 

1995 - Basis: $9.2 Billion [8]. 

 
Figure 15.  Leading Adhesives and Sealants Products 1995 - 

Basis: $9.2 Billion [8]. 

 

 
*2 Asia, Lat. América, Africa. 
 

Figure 16.  World adhesive markets. 



page
INTRODUCTION 

13 
 

 

1.7 Joining Methods Comparison 
 
There are several competitive joining methods such as mechanical fastening, 

welding and adhesive bonding. The advantages and disadvantages of each 

technique are presented in the next page (table 2). In this table we can see a 

comparison between several aspects of the joining technology and production 

aspects.  

There are three general joining methods that differ significantly from each other: 

1. Periodic – occasionaly some holes are made in the two components 

to join with fasteners or other mechanisms (figure 17); 

2. Linear – edges bead junction (occasionaly or continuously) just like a 

weld line (figure 18); 

3. Area – this is characterized by a full face contact of the components 

surfaces to attach togethter (figure 19). 

 

Adhesives may be used in periodic or linear joining methods, but the best 

attachment performance is achieved by the area joining method. This aspect is 

illustrated in figure 20, where adhesive bonded joints have a uniform stress 

distribution while the periodical methods add high stress points near the rivets, 

fasteners or spot welds. Another important point is the stiffening effect due to a 

wider bonded area in adhesive joints, reducing the unstiffened area, as shown 

in figure 21. 

 
Figure 17.  Periodic – Rivets; 

Screws; Spot welding. 

 
Figure 18.  Linear – Welding. 

 
Figure 19.  Area – Soldering; 

Brazing; Bonding. 

Rivet Adhesive 

 

 

 
Figure 20.  Stress distribution in loaded joints [9].  Figure 21.  Stiffening effect [9]. 

Rivet 

Adhesive 
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Table 2.  Joint features and production aspects com
parison board [8]. 
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The main disadvantages of adhesive bonding are the peel and cleavage loads, 

the high temperature limitations, the poor chemical resistance, the curing time, 

the process controls and the in-service repairs. 

 

Cleavage and peel stresses are undesirable for adhesively bonded joints. 

Forces at one end of a rigid assembly acting to peel the adherends apart induce 

cleavage stresses. Peel stresses occur when these forces are applied to one 

end of a joint where one or both of the adherends are flexible. The flexibility of 

the adherends results in a greater separation angle for peel than for cleavage. 

 
 

Adhesives are mostly polymers or synthetic resins, and these materials suffer a 

transition from glass to rubber properties once they are at high temperatures 

(generally 100-200ºC) leading to a lower bond strength and posterior failure. 

 

Some adhesives are affected by ambient corrosion factors or surrounding 

materials causing chemical degradation of the bonded joint. 

 

Most common adhesives require a curing time in order to obtain the maximum 

resistance. This can represent a disadvantage when compared to mechanical 

attachments that are immediate.  

 

Once an adhesive joint is badly made it can not be corrected because the joint 

is difficult to dismantle. The process controls must have high standards and 

sometimes these are unfamiliar. 
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C h a p t e r  t w o  

MECHANISMS OF ADHESION 

2.1 Forces of adhesion 
 

There are several types of forces contributing to the strength of 

adhesives and the strength of the bonds which they make. The bond 

types and their corresponding energies are compared in table 3. 

 

2.1.1 Primary or chemical forces  
 

 

i. Covalent Bonds  
 

These are chemical bonds which promote molecule formation, binding 

atoms together in two ways: 

 

a. Nonpolar bonds occur when there are two electrons evenly 

distributed between the two atoms, mainly when identical atoms 

are bonded together or when the two atoms have similar 

attractive capacities for electrons (electronegativity);  

 

b. Polar bonds occur when the atoms have different 

electronegativity and the electrons are attracted to the most 

electronegative resulting in an electrical dipole.  

 
 

ii. Ionic Bonds or inter-ionic forces  
 
When two ions of opposite charge are separated by a distance r, a 

force of attraction is generated, and can be valued by: 

 

 2
0

21

4 kr
qqF

πε
=  Eq. (2.1) 
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1q  and 2q  ⇒ Ionic charges; 

k  ⇒ Relative permittivity of the surrounding ions 
medium. 

0ε  ⇒ Permittivity of  vacuum 

 
This is the case for oxide surfaces on metals, and it is known that any 

ion such as –O- produced on the surface of an epoxy during cure, is 

strongly attracted to that oxidized metal surface.  

 

Note that because water has a very high permittivity, it easily penetrates 

in bonded joints, strongly reducing inter-ionic forces. This is a possible 

explanation for the degradation of adhesive joints by water. 

 

2.1.2 Secondary or physical forces 

i. Van der Waals forces 
 

These forces are the result of the interaction between molecule dipoles. 

There are three types: 

 

a. Dispersion or London forces; 

b. Debye forces; 

c. Keesom forces. 

 

ii. Hydrogen Bonds 
 

This bonding occurs when an hydrogen atom is chemically bonded to a 

very electronegative atom, making it very susceptible to establish a  

bond (hydrogen bond) with another electropositive atom, with a non-

bonded pair of electrons. Hydrogen bonds are stronger than Van der 

Waals forces. For example they are responsible for the high boiling 

point of water, as shown in figure 22. 

 

 

iii. Acid-base interactions 
 

These interactions are related to the two definitions of acids and bases, 

known as: 

 

 
 

Figure 22.  Schematic hydrogen 

bonds. 
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1. Br∅nsted and Lowry, which define an acid as a proton donor 

and a base as a proton acceptor; 
 

2.  Lewis, which defines an acid as an electron acceptor and a 

base as an electron donor; 
 

Table 3 shows the bonding types and their bond energies. 

 
Table 3. Bond types and typical bond energies [10]. 

Bond type  Energy 
[kcal/mol] 

Distance 
[Å = 10-10 m] 

   
Primary Atomic Bonds   

Ionic  140 to 250 
Covalent 15 to 170 Chemical Bonds 
Metallic 27 to 85 

1 to 2 

    
Secondary Atomic and Molecular bonds   

Dispersion (London) up to 10 4 to 5 
Debye forces up to 5 3 to 4 Van der Waals bonds 
Keesom forces up to 0,5 4 to 5 

    
Hydrogen bonds  up to 15 3 
    
Donor-acceptor bonds   

Bronsted acid-base interactions up to 240  
Lewis acid-base interactions up to 20  

 
 

The primary and secondary bonding forces will rapidly fall when the distance 

between the “active points” (bonding forces zones) is greater than 5 Å as shown 

in the figure 23. That is the reason why adhesives have to be applied in the 

liquid form to make an “intimate” contact with the adherend and enable the 

bonding forces to act. After that, the adhesive must harden (cure) to resist 

separation. 

 
Figure 23.  Atomic bonding forces vs. distance. 
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2.2 Theories of adhesion 
 
The main theories of adhesion are described next: 
 
 
 

2.2.1 Mechanical interlocking theory – Proposes that the major 

source of adhesion resides in the interlocking or mechanical 

keying of the adhesive into the irregularities of the substrate. This 

requires an uneven surface of the substrate. However Tabor et al. 

[11,12] and Johnson et al. [13] demonstrated that adhesion can 

be obtained with smooth surfaces. 

 
A mechanical interlocking is possible with porous surface wood, 

with honeycomb structure formed on aluminum alloys by etching 

or anodizing in acid baths. 

 

The surface roughness can be obtained:  

 

 
Mechanically – Some mechanical abrasion will increase the joint 

strength, mostly by ensuring that the substrates are free of oil, 

grease or any other contaminant. There are some other effects 

like the increase of thermodynamics and kinetics of adhesive 

wetting, and the wider interfacial bonding area [10]. 

 

 

 

Chemically – Chemical pretreatments produce a surface 

topography suitable for mechanical interlocking. There are also 

some studies that emphasize the different aspects of surface 

topography dendrites and pyramids [14], as shown in the next 

table. 
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Table 4. Peel adhesion of electroformed copper foil to epoxy laminates [14]. 

Surface topography of copper foil  Peel Energy 
Description Diagrammatic 

Representation  kJ/m2 
Flat   0.66 

Flat + 0.3 µm dendrites 
 

 0.67 

Flat + 0.3 µm dendrites +oxidation 
 

 0.77 

3 µm high-angle pyramids 

 

 
1.0 

    

2 µm low-angle pyramids + 0.3 µm 

dendrites  

 
1.3 

2 µm low-angle pyramids + 0.3 µm 

dendrites + oxidation  

 
1.5 

3 µm low-angle pyramids + 0.3 µm 

dendrites + oxidation 
 

 
2.4 

    

Nickel foil with club-headed nodular 

structures  

 
2.3 

 
 

With polymers, a microfibrous surface topography increases the 

joint strength, as observed by Packam [ 16 ] with adhesion of 

polyethylene (as hot-melted adhesive) to metallic substrates, as 

shown (figure 24). 

 
 

2.2.2 Physical adsorption theory – This is the most widely applicable 

theory, considering that the adhesive and substrate are in intimate 

molecular contact, and weak attractive forces, known as van der 

Waals forces (secondary bonds), operate between them. There are 

two types: the weaker dispersion forces and the somewhat stronger 

polar forces. Van der Waals forces occur between any two 

molecules in  contact, meaning that they are present in all adhesive 

bonds. There may be hydrogen and chemical bonds promoting a 

chemisorption (see table 3). 

 
.  

 

 

 

 
Figure 24.  Scanning electron 

micrographs of the fracture surface of 

polyethylene/copper joints showing the 

polyethylene remaining on: (a) a 

smooth chemically polished copper 

subtsrate, (b) a micro-fibrous cooper 

substrate [15]. 
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Kusaksa and Suetaka [17], observed the formation of interfacial 

hydrogen bonds between the carbonyl groups on the cyanoacrylate 

adhesive and hydroxyl groups on the surface of the aluminium 

oxide. Pritchard also puts in evidence hydrogen bonding in nylon 

cords/rubber and resorcinol-formaldehyde [ 18 ]. A practical 

application of this case is the production of tires.  

 

Chemical adsorption theory – According to the chemistry of the 

interface, several types of primary bonds can be formed across the 

interface such as covalent or ionic. According to Banks and Rowell 

[19] these interactions can be formed when adhesives containing 

isocyanate hardeners are used with surfaces containing active 

hydrogen atoms, such as hydroxyl groups on wood or glass. Indeed, 

infrared evidence of covalent primary bonds between a 

polyurethane adhesive and epoxy based primers was found by 

Klein et al [20] with the highest joint strengths. It is also known that 

covalent bonds are formed when silane coupling agents are used in 

glass [21]. 

 

Ionic bonding was observed between polymeric adhesives such as 

polyacrylic acid and metal oxides, used as filling materials for 

restoring teeth and for adhesively bonding inlays and crowns 

[22,23,24]. This ionic bonding between polyacrilic acids and zinc 

oxide surface is shown schematically by Chu et al. [24] in figure 25. 

 
 
 
 

    
Figure 25.     Possible reaction scheme for ionic bonding between a polyacrylic acid and 

a zinc oxide surface [24]. 
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2.2.3 Electrostatic or electric theory – Implies electron transfer 

between two surfaces. The force of attraction at the interface is the 

result of an electrical double layer formed by electrons transferred 

to balance the energy levels. This seems to be obvious for metals, 

but not to polymers which do not have conduction bonds. This 

theory was primarily studied by Deryaguin and co-workers [25] who 

related this known electron law with the intrinsic adhesion 

properties. In their studies the adhesive/substrate system was 

treated as a capacitor which is charged due to the contact of two 

different materials. Deryaguin [26] proved this theory by conducting 

peeling experiments on plasticized polyvinyl chloride/glass, natural 

rubber/glass and natural rubber/steel interfaces in air or argon at 

different gas pressures. 

 
 

2.2.4 Diffusion theory – Defined by the inter-diffusion of polymer 

molecules so that the boundary eventually disappears.  Mostly 

applicable to identical non-crosslinked polymers in contact, such as 

with contact adhesives, and the solvent-welding of thermoplastics 

such as polymethylmethacrylate. This theory is not valid for 

adhesive bonds with metallic materials [27] . 
 

When plastic materials possess similar solubility parameters, inter-

diffusion plays an important role in plastic welding technology [28]. 

Polymer chains in surface layers are given sufficient mobility to 

inter-diffuse either by the application of heat or a suitable solvent 

over the regions to be bonded. The solvent is required to plasticize 

strongly the surface of the polymers, resulting in a large increase in 

free volume and hence in the chain mobility of the polymer in the 

interfacial region, increasing the rate and extent of inter-diffusion of 

the polymer chains. This technique is mostly confined to glassy 

thermoplastics, such as polycarbonates, acrylic polymers, etc. 

which have no major structural restrictions of their molecular chains, 

and weaker crosslinks. 
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The PVC industry uses an adhesive Deceuninck Decocol (figure 

26), which acts as solvent cementing. However this adhesive is not 

for structural applications. It is used for simple bonding of small 

parts. 

 

Solvent-cemented joints of similar materials are less sensitive to 

thermal cycling than joints bonded with conventional adhesives 

because there is no stress at the interface due to differences in 

thermal expansion between the adhesive and the substrate. 

 
 

2.2.5 Weak boundary layer theory – States that clean surfaces are 

capable of forming strong adhesive bonds, which can be prevented 

by a layer of contaminant which is cohesively weak such as oils, 

greases or rust on steel.  In some cases the adhesives can dissolve 

these contaminants. Clean surfaces of most of the materials can 

form strong adhesive bonds in dry conditions. There are some 

exceptions, namely low surface energy polymers such as 

polyethylene, polypropylene, polytetrafluoroethylene and silicones 

[29] . 

 
 
 
 
 
The adhesive selected for this study was an acrylate and the substrates are 

PVC. The surface preparation consists of acetone cleaning (see chapter 4). 

Therefore, the adhesion forces will be mostly due to physical adsorption with 

mechanical interlocking because the PVC surface is not perfectly smooth. 

 

 
 

Figure 26.  Deceuninck’s cement 

adhesive. 
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C h a p t e r  t h r e e  

ADHESIVES 

3.1 Adhesive classification 
 
The adhesion science is sustained by the knowledge of several disciplines. It is 

a truly wide field of exploration in search for better and better solutions.  

 

 

Figure 27.  Science of adhesion; Multidisciplinary graph [8]. 

 

The aspects of multidisciplinary integration are reflected in figure 27, where the 

science of adhesion assumes the central position as a result of the integration 

of other disciplines.  

 

This study will be particularly centered in the joint design, not discarding the 

other disciplines. 

 

Physics 

Surface  
Science 

Science of 
Adhesion 

Joint  
Design 

Mechanics 

Polymeric 
Materials 

Chemistry 
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Adhesives may be classified by: 

 

1 Function; 
  

2 Materials to bond; 
  

3 Physical form; 
  

4 Application and cure requirements ; 
  

5 In-service durability; 
  

6 Chemical composition. 
 

These distinctions are all interconnected at some level. 

 

 

3.1.1 Function 
 

This criterion classifies adhesives in structural and non-structural adhesives. 

Structural adhesives are supposed to hold together structures and resist high 

loads in most environments.  

 

If the adhesive has a shear strength value greater than 7 MPa (1000 psi), then it 

is assumed to be a structural adhesive. In the next table adhesives are listed as 

structural or not. 
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Table 5. Several adhesives function/performance classification. 

ADHESIVES 

   
Structural  Non structural 

   

Epoxy 
Epoxy Resins 
Curing agents 

 

Elastomeric Resins 
Asphalt 
Butyl rubber 
Polyisobutlyene 
Polyvinyl methyl ether 

   

Epoxic Hybrids 
Toughened Epoxys 
Phenolic Epoxys 
Epoxy nylon 
Epoxy Polysulfide 
Epoxy vinyl 

 

Thermoplastic Resins 
Polyvinyl acetal 
Polyvinyl acetate 
Polyvinyl alcohol 
Ethylene vinyl acetate 
Polyester (saturated) 
Polysulfone 
Phenoxy 

   
  
  Phenolic 

Modified Phenolic 
Nitrile Phenolic 
Vinyl Phenolic 
Neoprene Phenolic 

 

Inorganic Resins 
Sodium silicate 
Phosphate cements 
Litharge cement 
Sulfur cement 

   

Acrylic  
Natural organic resins 

Agricultural glues 
Animal glues 

   
Modified acrylic   

   
Polyurethane   

   
Cyanoacrylate   

   
Aromatic high temperature 

systems 
Polyimide 
Bismaleimide 
Polybenzimidizole 

  

   
Resorcinol and phenolresorcinol 
formaldehyde   

   
Melamine and urea 
formaldehyde   

   
Polysulfide 
Silicone   
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3.1.2 Materials to bond 
 
The substrate to bond is another way to classify adhesives. Some examples 

are: metal adhesives, wood adhesives and vinyl adhesives, in accordance to 

the substrate they will bond. 

3.1.3 Physical form 
 
The availability of adhesives assumes different physical forms. The most common 

are: 

• One part solution (Liquid) - Free flowing adhesives supplied in a ready 
to apply solution – not requiring mixing; 

• Solid (tape, film, etc.) – Do not require metering or mixing, and are 
easier to handle; 

• One Part solventless (liquid or paste) – Do not require mixing and 
therefore give litle waste; 

• Multi Part solventless (liquid or paste) – Require metering and mixing 
before application, involving a certain waste. 

 
The difference between liquid and solid adhesives resides on their viscosity and 

therefore the method of application. The adhesives supplied are initially solid, but 

will go liquid with temperature to make intimate contact with surface. For instance, 

pastes need tools like trowels and caulking guns to ensure the best distribution. 

The next table shows advantages and remarks of these physical forms. 

Table 6. Physical forms advantages and remarks [8]. 

Type Remarks Advantages 
   
Liquid 
 

Most common form; practically 
every formulation available. 
Principally solven-dispersed 

Easy to apply. Viscosity often 
under control of user. Major 
form for hand application 
 

   
Paste 
 

Wide range of consistencies. 
Limited formulations; 
principally solid modified 
epoxies 

Lends itself to high production 
setups because of less time 
wait. High shear and creep 
strengths 

   
Powder 
 

Requires mixing or heating to 
activate curing 

Longer shelf life; mixed in 
quantities needed 

   
Mastic 
 

Applied with trowel Void-filling, non flowing 

   

Film, tape 
 

Limited to flat surfaces, wide 
range of curing ease 

Quick and easy application. 
No waste or run-over; uniform 
thickness 

   
Other 
 

Rods, supported tapes, 
precoated copper for printed 
circuits, etc. 

Ease of application and cure 
for particular use 

 
 



page
ADHESIVES 

29 
 

3.1.4 Application and cure requirements 
 
The application and the way the adhesive reacts or solidifies is another 

distinction. An adhesive can solidify by: 

• Chemical reaction - with a hardener or reaction with an outside energy 
source such as heat, radiation, surface catalyst, etc; 

• Loss of solvent or loss of water –harden by the evaporation of the 
carrier (water or solvent) in air or diffusion in porous substrates. The 
carrier intends to lower the viscosity so it is easily applicable ; 

• Cooling from a melt – generally thermoplastics that melt when heated 
and harden when cooled. 

 
Several adhesives require one or more of the above mechanisms to solidify, 

adding some versatility to its applications. 

3.1.5 In-service durability 
 
The durability and the resistance of adhesives also allows to classify them as 

acid-resistant adhesives, heat-resistant adhesives, and weatherable adhesives, 

indicating the environments for which each they are best suited. 

3.1.6 Chemical composition 
 
The chemical composition of an adhesive tells us if it is a thermoplastic, a 

thermoset, an elastomer, or an hybrid (composition of two or more also known as 

alloy). 

i. Thermoplastic adhesives 
 
Thermoplastics are polymers with a branched or linear molecular structure, as 

shown in figure 28, which melt or soften under heat action. Thermoplastic 

adhesives can be melted with application of heat and then applied to the 

substrate. The cure process occurs by cooling. 

Another option to obtain a flowable adhesive is to use a solvent to dissolve the 

thermoplastic. The adhesive hardens when the solvent evaporates.  

Thermoplastic adhesives can also be applied to a surface waiting for posterior 

“activation” by moisture, heat or solvent, just like the mailing envelope adhesive. 

 
 

Linear 

 
 

Branched 
 

 
 

Figure 28.  Linear and branched 

molecular structures 

(thermoplastic) [8]. 
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ii. Thermosetting adhesives 
 

The major features of thermosetting adhesives reside in their cross-linked 

molecular structure after cure. Contrary to thermoplastics, these adhesives 

cannot be softened by heat once cured.  

Depending on their typology, thermosetting adhesives cure at room or elevated 

temperature by an irreversible chemical reaction called crosslinking. It is 

characterized by two linear polymers linked to form a three dimensional 

chemical rigid structure (figure 29). 

There are some “room temperature” thermosseting adhesives that cure by 

internal reactions that provide the curing heat in a process called exotherm. 

iii. Elastomeric adhesives 
 
This chemical distinction is due to the rheological properties of elastomeric 

adhesives. Although elastomeric adhesives can be thermoplastic or 

thermosetting, the elastomeric resin in which they are based provides high 

extension  and compression capabilities, having a big energy absorption 

characteristic. This fact makes them a good choice for joint designs with 

nonuniform loading.  

These adhesives are characterized by low modulus, high toughness and a high 

degree of elongation, making them the best choice to bond substrates with 

different thermal expansion coefficients. 

iv. Hybrid or alloy adhesives 
 
The hybrid adhesive concept aims to combine one or more of the previous 

adhesive types in order to obtain a mixture improving certain properties. However 

this has not been easy to obtain, because of the negative impact that some 

chemical and physical properties have on each adhesive type. Two hybrid 

systems have been created recently to obtain a better formulation: 

1. Reactive hybrids – two liquids that blend and react together in order 

to cure; 
2. Dispersed phase hybrids – discrete flexibilizing particles are 

incorporated in a resin matrix. 
 

These adhesives are characterized by high peel, impact and shear strengths 

even at high temperatures and also by a good chemical resistance. In oily 

substrates, the hybrid adhesives tend to form good bonding because of oil 

absorption acting as a flexibilizer in the adhesive formulation. 

 
 

 
 

Figure 29.  Cross-linked molecules 

(thermossets) [8]. 
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3.2 Adhesive types 
 
There are many adhesives used in bonding processes, but after the last century 

scientific developments, the industry standard adhesives are: 

 

3.2.1 Epoxy adhesives 
 
Epoxies - These adhesives consist of a formulation composed of an epoxy 

resin and a hardener. There are many resins and also many different 

hardeners, allowing a great versatility in formulation. There are epoxy hybrids 

such as: toughened epoxies, epoxy-phenolics, epoxy-nylon, epoxy-polysulfide 

and epoxy-vinyl. Their good wetting characteristics offer a high degree of 

adhesion to almost all substrates resulting in extremely strong durable bonds. 

These characteristics make them suitable for a wide range of applications. 

Epoxy adhesives are available in one-part or two-part .They can be supplied as 

flowable liquids or highly thixotropic products with gap-filling capability of up to 

25 mm, or as films as shown in figure 30. 

Epoxy polyamide (epoxy nylon) – The polyamide resin acts as a hardener 

and a flexible agent. These adhesives have a better flexibility and a large 

increase in peel strength compared with unmodified epoxy adhesives. In 

addition, epoxy-nylon adhesives have good fatigue and impact resistance 

Epoxy polysulfide – The polysulfide resin contributes for a better chemical 

resistance. These are good adhesives to bond different substrates, on account 

of their flexibility that allows different thermal expansions. 

Epoxy phenolic – Epoxy temperature resistance is improved by the phenolic 

resin, allowing to sustain temperatures of 200ºC with good peel properties. 

Epoxy vinyl – Certain vinyl resins improve impact and peel strength. However 

the temperature resistance will be reduced by the lower vinyl glass transition 

temperature (Tg). 

 

 

 
Figure 30.  3M® epoxy adhesive 

film. 
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Figure 31 shows the effect of temperature on the tensile shear strength of 

modified epoxy adhesives tested with aluminum substrates [8]. 

 

Figure 31.  The effect of temperature on the tensile shear strength of modified epoxy 

adhesives (substrate is aluminum) [8]. 

 

 

3.2.2 Phenolic adhesives 
 
These adhesives were primarily used to bond wood to wood. For structural 

application they are modified with a vinyl or an elastomer. 

 

Modified phenolics – With a long story of successful use for making high 

strength metal-to-metal and metal-to-wood joints, they were the first adhesives 

for metals. These adhesives require heat and pressure for the curing process in 

order to avoid porosity.  

 

These modified phenolics adhesives are vynil-phenolics, nitrile-phenolics and 

neoprene-phenolics, and their properties are given in the table 7.  
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Table 7. Modified phenolics supply forms and properties. 

Adhesive Form Properties 

   

Vinyl Phenolic 
Film 

1 part + solvent 
Heat resistant (120ºC). 

Nitrile Phenolic 
Film 

1 part + solvent 

Chemical resistance and high temperature capability (160ºC); 

Heat shock resistant;  Flexibility. 

Neoprene Phenolic 
Film 

1 part + solvent 
Low temperatures resistant (-50ºC). 

 

3.2.3 Acrylic adhesives 
 
There are mainly 3 types of acrylics: the anaerobics, the cyanoacrylates and the 

methacrylates. 

Cyanoacrylates – These adhesives cure through reaction with moisture held 

on the surfaces to be bonded. Solidifying in seconds, they are commonly used 

in small plastic parts and rubber. Cyanoacrylates are known to be “crazy glues” 

and “superglue” like miracle glues having a major commercial success. They 

are supplied in liquid and thixotropic versions, having a little gap-filling 

capability. They are based on a special type of acrylic.  

Anaerobics – Also known as “locking compounds” or “sealants”, they are used 

to secure, seal and retain turned, threaded, or similarly close-fitting parts. They 

harden when the air is excluded from the contact between metal, just like when 

a screw is fastened in a thread. With a relatively rapid curing, these adhesives 

do not have gap-filling capability, as a result of their curing process.  

Toughened acrylics and methacrylates – The modified acrylics are 

thermosetting systems that provide high shear strength to joints. Their 

formulations are based on crosslinked polymethyl methacrylate grafted to vinyl 

terminated nitrile rubber, in order to improve flexibility and impact resistance. 

They are known to be weather and moisture resistant. 
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Usually mixed prior to application, their pot-life should be carefully controlled on 

account of their fast cure at room temperature. However there are some 

modified acrylic adhesive systems that allow separate application of the 

hardener as primer, allowing substrate storage for 6 months [30]. When the part 

is set to be bonded, only the acrylic resin needs to be applied. There is another 

particular application that allows applying the hardener to one part face and the 

acrylic resin to the other part face and when the two faces are bonded together, 

a fast cure occurs, developing handling strength in 60 seconds [31]. 

Edward M. Petrie states that the fast cure and variety of application alternatives 

make this adhesive valuable in many production processes [8]. 

Modified acrylics tolerate minimal surface preparation, bonding well to a wide 

range of materials as reported in table 8 with the PVC line highligted. It is 

important to notice that the failure occurs in the substrate in most of the 

polymeric materials, including PVC, which is the ideal situation in a bonded 

joint. 

Table 8. Tensile shear strength of various joints bonded with thermosetting 

acrylic adhesives [32]. 

  Average lap shear, MPa at 22º C 

Substrate* 
 Adhesive 

A 

Adhesive 

B 

Adhesive 

C 

Alclad aluminum, etched  30,54 27,57 37,36 

Bare aluminum, etched  29,68 27,48 34,58 

Bare aluminum, blasted  23,27 25,48 30,17 

Brass, blasted  27,68 21,72 28,09 

302 stainless steel, blasted  32,03 32,41 35,65 

302 stainless steel, etched  19,58 29,48 18,27 

Cold-rolled steel, blasted  14,13 23,34 14,72 

Copper, blasted.  20,09 18,89 22,44 

Polyvinyl chloride, solvent wiped  9,48 ♦ 8,62  ♦ 8,62 ♦ 

Polymethyl methacrylate, solvent wiped  10,69 ♦ 7,99 ♦ 5,96 ♦ 

Polycarbonate, solvent wiped  17,72 ♦ 6,62 17,72 ♦ 

ABS, solvent wiped  11,10 ♦ 11,27 ♦ 8,83  ♦ 

Alclad aluminum-PVC  8,14 ♦   

Plywood, 5⁄8-in. exterior glued (lb / in.)  5,53 ♦ 6,74 ♦  

AFG-01 gap fill (1⁄16-in.) (lb / in.)  … 7,47 ♦  

* Metals solvent  cleaned and degreased before etching or blasting 

♦ Substrate failure 

 

 
 

Figure 32.  Araldite methacrylates. 
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3.2.4 Polyurethane adhesives 
 
Polyurethane adhesives are commonly supplied in one part moisture curing or 

two-part as liquids with a gap-filling capability of up to 25 mm and can be made 

with a variable range of curing times. They are used to bond certain 

thermoplastic materials and GFRP (glass fiber reinforced plastics). 

 

3.2.5 UV curable adhesives 
 
Their main characteristic is a very quick cure by exposure to UV radiation. 

These adhesives are modified acrylic and epoxy adhesives, but while acrylic UV 

adhesives require one substrate to be UV transparent, the UV initiated epoxy 

adhesives can be irradiated before closing the bondline, curing in a few hours at 

ambient temperature. 

 

3.2.6 Aromatic adhesives 
 
Polyaromatic adhesives are known for their outstanding thermal resistance 

(200-300ºC).  There are several polyaromatic resins such as polyimide, 

bismaleimide, and polybenzimidazole, developed for aeronautical and electronic 

industry in order to bear high temperatures. 

 

3.2.7 Polyesters (unsaturated) 
 
 
Thermoset adhesives that have a significant volume reduction when curing, 

making them unsuitable for industrial application. They are suitable for high 

temperature bonding. 

 

 

Structural adhesive properties are summarized in table 9. 
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Table 9. Structural adhesive properties [33]. 

 
 

3.2.8 Rubber adhesives (elastomers)  
 
 
These adhesives are not suitable for sustained loading. They are based on 

solutions of latexes, solidifying through loss of solvent or water. 

Silicone adhesives – These are great sealants of joints with different thermal 

expansions. They resist temperatures up to 250ºC. 

Polychloroprene (neoprene) – Commercially known as neoprene, these are 

contact adhesives with good mechanical properties and good resistance to 

water, salt spray, commonly encountered chemicals, and biodeterioration.  

 

Polysulfide adhesives – These adhesives are best known as sealants rather 

than adhesives because of their low strength and high degree of elongation. 

Adhesives 
 

Supply Form 
Yield 

strength 
[MPa] 

Max. Service 
temperature 

[ºC] 
Peeling 

resistance 
Impact 

resistance 
Chemical 
resistance 

        

Vinyl phenolic 
 1 liquid component 

Liquid + Powder 
Film 

17 - 35 100 -130 Average Good Poor 

        

Nitrile phenolic  1 liquid component 
Film 15 -30 140 – 170 Average Good Good 

        
Anaerobic 
(Acrylic) 

 1 liquid component 10 - 40 120 – 150 Good Good Average 

        
Cyanoacrylate  1 liquid component 10 - 35 80 poor Bad Bad 
        

Polyurethane  2 liquid 
components 8 - 15 90 Average Good Good 

        
Polyimide  Film 10 - 15 250 – 300 Good Poor Good 
        
Epoxy  Various 15 - 45 80 – 150 Good Bad Good 
        
Epoxy polyamide  2 component liquid 15 - 45 80 Poor Good Poor 
        
Epoxy 
polysulfide 

 2 component liquid 15 – 25 80 Good Good Good 

        

Epoxy phenol  1 component liquid 
Film 20 200-250 Poor Bad Good 

        
Epoxy nitrile  Film 10-46 100 - 120 Average Good Good 
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3.2.9 Thermoplastic adhesives 
 
 
Hot melts - Based on modern polymers, they are used for the fast assembly of 

structures requiring little mechanical resistance. Usually solid polymers that melt 

when heated, and then form a quick connection upon cooling. 

 

Plastisols – Requiring heat to harden, their joints are resilient and tough. They 

are based on modified PVC. Used in automotive industry with phenol or epoxy 

resins. 

 

Polyvinyl acetates (PVAs) – Mostly used to bond porous materials, such as 

wood, paper and packaging. These adhesives are based on a vinyl acetate 

emulsion. 

 

Pressure-sensitive adhesives – They are not suitable for sustained loading, 

but are able to withstand adverse environments. Supplied on tapes and labels, 

these adhesives do not solidify. 

 

 

 

 

 

 

 

 



page 
38 

ADHESIVES 

 

 

In table 10, the adhesives are summarized by type, and related to some of their 

applications. 

Table 10. Adhesive applications [33]. 

Type  Adhesive  Substrates  Applications 
       
Natural  Amide, Dextrine  Paper, cork,  
  Fix Glues  Textiles, Wood  
  Canada Balm, etc  Some polymers and 

Metals 
 

Domestic 
appliances and 
packaging. 

       
Thermoplastic  Cellulose   Metals,   
  Polyvinyl acetate   Wood,  
  Polyvinyl Alcohols  Leather,  
  EVA, Acrylic  Textile,  
  Polyethylene  and Paper.  

Low load bonds. 

  Polyamides     
       
Thermosets  Melamine  Metal,  

aromatic  Formaldehyde  Wood,  
  Polyesters  Ceramic,  
  Epoxies  and Glass.  

Metal or wood 
structural bonds, 
sustaining 
considerable 
loads. 

  Phenolics     
       
Elastomers  Natural rubber  Polymers,  
  Synthetic rubber  Rubbers,  
  Polyurethane  Fabrics   
  Polychloroprene  and Leather  

Flexible bonds, 
with low loads 

  Nitrile     
       
Two polymer   Nitrile  Phenolic  Metals,  
adhesives  Neoprene Phenolic  Ceramics,  
  Vinyl Phenolic  Glass,  
  Epoxy Polyamide  and thermoset  
  Epoxy Polysulfide  resins.  
  Epoxy Phenol    
  Epoxy Polyurethane    
  Epoxy Silicone    
  Epoxy Nitrile    

High loads and 
weather 
exposed 
structures. 
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JOINT DESIGN 

4.1 Introduction 
 

The design of the adhesive joint will play a significant role in the joint resistance 

to applied mechanical loads and environment. Although it may be tempting to 

use joints originally intended for other methods of fastening, adhesives require 

special design considerations for optimum properties. 
 

 4.2 Joint stresses overview 
 
It is also important to understand and determine the types of stress that may be 

present in an adhesive joint, such as: 

 Tensile; 
 Compressive; 
 Shear; 
 Cleavage; 
 Peel. 

 

Tensile Stress: A tensile stress tends to pull an object apart. The stress also 
tends to elongate an object. 
 

 
Figure 33.  Schematic of tensile stress. 

 

Compressive Stress: A compressive stress, on the other hand, tends to 
squeeze an object together. 
 

 
Figure 34.  Schematic of compressive stress. 

 

C h a p t e r  4
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Shear Stress: A shear stress results in two surfaces sliding over one another. 
 

 
Figure 35.  Schematic of shear stress. 

 

 

Cleavage Stress: A cleavage stress occurs when a joint is being opened at 
one end. 
 

 
Figure 36.  Schematic of cleavage stress. 

 

 

Peel Stress: A peel stress occurs when a flexible substrate is being lifted or 
peeled from the other substrate. 
 

 

Figure 37.  Schematic of peel stress. 

 

Peel and cleavage stress must be avoided and the joint design philosophy is to 

reduce to a minimum these stress components. 

Single lap joints are very easy to manufacture and are found in many 

applications. Several closed form analysis have been developed to determine the 

stresses present in this joint. The first approach is supposing the adherend to be 

rigid and the adhesive to deform only in shear (figure 38), τ :  

wl
P

=τ  Eq. 4.1 
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where: 

P  ⇒ applied load 
w  ⇒ joint width 
l  ⇒ joint length 
 

 

 
 

Figure 38.  Shear stress in the SLJ: simplest analysis [34]. 

 

Volkersen [35] improved this analysis by introducing the differential straining 

concept as shown in figure 39, where the parallelograms (figure 39a) become 

distorted to new shapes shown (figure 39b) when loaded. Applying Volkersen’s 

equations allows plotting the shear stresses in the overlap shown in figure 39c. 

The shear stress peaks at the ends of the overlap and is minimum in the middle. 

 

 

Figure 39.  Volkersen analysis; (a) unloaded; (b) loaded; (c) shear stresses [34]. 
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However, this analysis did not consider the rotation of the joint that occurs 

with the bending moment resulting from the non collinear forces. This means 

that there is a geometric non-linearity. Having this in mind, Goland and 

Reissner [36] introduced the bending moment factor k, relating the bending 

moment on the adherend at the end of the overlap, M, to the in-plane 

loading by: 

2
tPkM ⋅=  Eq. 4.2 

    

where:  

P  ⇒ applied load 
t  ⇒ adherend thickness (adhesive layer thickness was neglected) 
k  ⇒ bending moment factor 
 

 

 
 

Figure 40.  Geometrical representation of Goland and Reissner bending moment factor [34]. 

 

 

When the load is very small, there is no rotation and the bending moment factor is  

1=k , resulting a moment
2
tPM =  as shown in figure 40a. The Goland and 

Reissner mode gives shear stresses similar to those of the Volkersen analysis, 

but it also gives the transverse tearing (peel) stresses in the adhesive as shown in 

figure 41.  

 

However these two analyses are based in an elastic behavior, when the adhesive 

and adherend may become non-linear or plastic. Considering the plastic behavior 

of the adhesive, Hart-Smith [37 ] developed the Volkersen and Goland and 
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Reissner theories. The adhesive characterization is done assuming an 

elastic/perfectly plastic model such that the total area under the stress-strain 

curve is equal to that under the true stress-strain curve and that the failure stress 

and failure strain are the same. Hart-Smith found that the plasticity of the 

adhesive increases the joint failure strength above the predictions of purely elastic 

analyses. A ductile adhesive will yield and sustain further load until eventually its 

shear strain to failure is attained as shown in figure 42. It is preferable to have a 

joint with a ductile adhesive such as toughened epoxies. Besides being stronger, 

it is safer as it yields before fracture, redistributing and reducing the peak shear 

strains. 
 

 
Figure 41.  Peel stresses in a single lap joint [34]. 

 

 

 
 

Figure 42.  Schematic explanation of shearing in adhesive [38]. 
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More closed-form analysis have been developed with an increasing degree of 

complexity such as those of Renton and Vinson [39], Allman [40] and Adams and 

Mallick [41] considering a zero value for the shear stress in the joint extremity. 

Ojalvo and Eidinoff [ 42 ] considered the shear stress variation through the 

adhesive thickness. Frostig et al. [43] used higher-order theory to analyze single 

lap joints with an adhesive fillet. Adams and Peppiatt [44] considered the Poissin 

effect in the width direction. 

 

 

4.3 T-joint design 
 

 

The design of the transom joint is like a t-joint. A theoretical analysis with the 

finite element method of this type of joint have already been published by 

Apalak et al. [45], and there is also an interesting work by da Silva and Adams 

[46], but in both of them steel adherends are used. In a recent work published 

by Broughton et al. [47], aluminum and glass reinforced plastics (GRPs) were 

used. There is also a study about T-joints for marine applications using 

polyester/glass laminated composite and plywood as adherends by Marcadon 

et al. [48]. However PVC T-joints have not yet been studied. 

 

 

 

Figure 43 makes clearly visible that the poorest results are obtained with tensile 

transverse (peel) stresses, while compressive forces, such as N, generally do 

not cause faillure unless buckle occurs in figure 43i. In this study a joint simmilar 

to figure 43h is studied. 
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Figure 43.  Possible T- Joints [49]. 
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4.4 Joint strength improvement 
 

It is known that critical points of geometric discontinuity generate stress 

concentration leading to failure. Attempting to optimize the geometry of the joint 

Adams et al. [50] proposed some improvements like filleting, outside taper and 

inside taper as shown in figure 44. 

 

 

Figure 44.  Designs of double-lap joints considered (dimensions in mm) [50]. 

 

Modification of the adherend to reduce the peel stress have also been studied by 

Hildebrand [51], Groth and Nordlund [52], Potter et al [53] and Kaye and Heller 

[54]. 
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4.6 Bonded joint failure 
 
The nature of joint failure must be taken into account to design a good joint. Joints 

may fail in adhesion or cohesion modes or by some combination of the two (figure 

45). 

 

Figure 45.  Examples of adhesive and cohesive failure [8]. 

 
Figure 45b shows an interfacial bond failure between the adhesive and 

adherend defined as adhesive failure. In this case the bulk cohesive strength of 

the adhesive material can be assumed to be greater than the intermolecular 

strength of adhesion. 

 

Cohesive failure occurs when the failure is such that a layer of adhesive 

remains on the adherend (figure 45a).  

 

Figure 46 shows a cohesive failure of the adherend occurring when the 

adherend fails before the adhesive. In this case the bond strength is stronger 

than the forces holding the bulk together. This type of failure is the ideal 
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situation because the joint is stronger than the adherends being loaded, i.e., the 

joint is not the weak link. 

 

 
 
 

 
 
 

Figure 46.  Cohesive failure of the adherend. 

 

An adhesive failure indicates the presence of a weak boundary layer or improper 

surface preparation as registered in table 11. Cohesive failure is the most 

common type of failure but the ultimate goal is failure in the adherend. 

 

Table 11. Failure mode as an interference to bond quality [8]. 

Failure mode  Inference  
Adhesive failure (interfacial)  Cohesive strength > interfacial strength Weak boundary layer 
    
Cohesive failure (bulk)  Interfacial strength > cohesive strength 
   
Adhesive/Cohesive failure (mixed failure mode)  Interfacial strength ≈ cohesive strength Improper surface preparation 
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4.7 Joint design considerations 
 

In summary, there are several rules that the designer should consider when 

designing an adhesive joint [8], such as: 

1. Keep the stress in the bond-line to a minimum; 

2. Whenever possible, design the joint so that the operating loads will 

stress the adhesive in shear; 

3. Peel and cleavage stresses should be minimized; 

4. Distribute the stress as uniformly as possible over the entire bonded 

area; 

5. Adhesive strength is directly proportional to bond width. Increasing 

width will always increase bond strength. Increasing the depth of 

overlap does not always increase strength; 

6. Generally, rigid adhesives are better in shear, and flexible adhesives 

are better in peel; 

7. Although typically a stronger adhesive material may produce a 

stronger joint, a high elongation adhesive with a lower cohesive 

strength could produce a stronger joint in applications where the 

stress is distributed nonuniformly; 

8. The stiffness of the adherends and adhesive influence the strength of 

a joint. In general, the stiffer the adherend with respect to the 

adhesive, the more uniform the stress distribution in the joint and the 

higher the bond strength; 

9. The higher the tE ⋅  (modulus x thickness) of the adherend, the less 

likely the deformation during load, and the stronger the joint; 

10. Within reasonable limits, the adhesive bond-line thickness has not a 

strong influence on the strength of the joint. More important 

characteristics are a uniform joint thickness and void free adhesive 

layer. 
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C h a p t e r  f i v e  

SELECTION OF ADHESIVE FOR PVC BONDING 

This chapter deals wit the selection of the best adhesive to use in PVC bonding. 

The previous knowledge about adhesives and joint design was taken into account 

and a market assessment was done. The selection of the adhesive is a crucial 

step because it is responsible for all the future steps and results. 

 

5.1 Selection process 
 
The adhesive selection depends primarily on: 
 
 

 the type and nature of substrates to be bonded; 
 
 
 the methods of curing that are available and practical; 

 
 
 the expected environments and stresses that the joint will see in service. 

 
 

 
 

 
 

Figure 47.  Adhesive and sealant selection considerations [8]. 
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As shown in figure 47, the selection is done in three stages: 

 

1. The decision making process is the point where the several inputs, 

normally inherent to the problem, are taken in account and used as 

metrics to evaluate each adhesive. 

2. After evaluating the adhesives, the selection is done by choosing the one 

that best fits the purpose. This selection will determine the success of the 

next stage. 

3. In the last stage, the selection is experimentally validated. Laboratory 

tests will determine the performance of the adhesive and joint. 

5.1.1 Plastic bonding – substrate selection 
 
The design of joints for plastics and elastomers generally follows the same 

practice as for metal. However, the designer should be aware of certain 

characteristics for these materials that require special consideration. Such 

characteristics include flexibility, low modulus, high thermal expansion 

coefficients, thin section availability, and anisotropy. These characteristics tend 

to produce significant non-uniform stress distribution in the joint. Thus, tough, 

flexible adhesives are usually recommended to bond plastic or elastomer 

substrates [8]. 

 

There is no benefit in using high modulus adhesives on low modulus substrates 

as PVC, because the load transfer is less efficient than with closer matched 

modulus. Rigid adhesives result in local stress concentration and crack initiation. 

Therefore by using adhesive/substrate combinations with similar modulus, 

improvement in joint strength can be expected [55].  

 

There are also some chemical properties to consider, when working with PVC. 

The adhesive components shall not migrate to PVC surface or change its 

properties by dissolution. PVC can be stress cracked by uncured cyanoacrylate 

adhesives. It is compatible with acrylic adhesives, but can be attacked by their 

activators before the adhesive has cured. Any excess activator should be 

removed from the surface of the PVC immediately because it can migrate into 

PVC and reduce its performance. It is also known that it is incompatible with 

anaerobic adhesives [56]. PVC is compatible with epoxy and polyurethane 

adhesives, but the phenolic adhesives can aggressively migrate into PVC and 

rapidly change its appearance and UV resistance. 
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5.1.2 Application and bonding methods 
 
The ease of adhesive application is very important to obtain a good 

acceptability by the industry. In fact, the possibility to automate its application 

should be a major concern in the adhesive selection.  

 

The surface preparation is another important factor that will define the 

performance of the bonding joint. With PVC, there is a major advantage 

because Loctite® has discovered that surface roughening and/or the use of 

Prism Primer 770 or 7701 resulted in either no statistically significant effect or in 

the rigid PVC failing at a statistically significant lower bond strength than the 

untreated PVC [56]. So there are no special surface treatments other than 

cleaning the bonding surface, making it a very good solution for industry in 

terms of working hours. 

 

It is also important for the adhesive to have a brief curing time, allowing 

handling. 

5.1.3 Service environments  
 
The adhesive should have weatherability properties similar to those of the PVC. 

The glass transition temperature (Tg) is very important, because after reaching 

this temperature the adhesive starts to behave like a rubber [34]. This point is 

treated in section 5.6. 

5.1.4 Cost 
 

Once again the industrial factor plays a major role, because the final price of the 

product should not be affected. If the adhesive proves to be a less expensive 

solution, it will have a good acceptance, otherwise its advantages will be of no 

industrial utility for production. However, this study was not driven by the cost 

factor, but by the best solution to obtain a bonding joint. 

5.1.5 Market 
 

The availability of the adhesive is very important. If the adhesive is available only 

in certain regions or if it has supply problems it will not be a good solution in 

industrial context.  
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Based on the precedent process selection, the following criteria were used for the 

present application. 

 

Table 12. Criteria used to select the adhesive. 

► Tensile modulus ≈ 2 GPa (near to PVC tensile modulus) 

 Ductility The best ductility possible. 

► Tg ≈ 80ºC (near to PVC Tg) 

► Chemically compatible with PVC 

► Easy application/automated if possible 

► Available in the market (good supply) 

 

The local suppliers were contacted to find the adhesive that best fits the above 

requirements. 

 

  5.2 Adhesive selection 
 
After receiving and screening the different supplier’s proposals, two adhesives 

were selected and tested: 

 Araldite® 2021 – from Huntsman®; 

 

Table 13. Adhesive supplier properties. 

► Tensile modulus ≈ 1,43 GPa  

► Ductility 50 – 75 % 

► Tg  no reference 

► Chemically compatible with PVC 

► Automated (two component cartidge) 

► Supplied by Reciplás . 

 

Loctite® 3030 – from Loctite®. 

 

Table 14. Adhesive supplier properties. 

► Tensile modulus ≈ 0,043 GPa 

► Ductility 76 % 

► Tg no reference 

► Chemically compatible with PVC 

► Easy application/automated if possible 

► Supplied by Sistimetra. 

* although this adhesive has a low tensile modulus (not considered a structural 

adhesive) it was considered in this study for its high ductility. 



page
SELECTION OF ADHESIVE FOR PVC BONDING 

55 
 

 
 
The next step is the experimental validation to confirm the adhesive properties 

and supply the necessary mechanical properties for the FEM analysis. Two types 

of mechanical tests were done: 

• Tensile test of the adhesive in bulk (BS 2782:Part 3). This test allows to 

determine the adhesive mechanical properties such as the Young’s 

modulus, the strength and the ductility. 

 

• Single lap joint test (ASTM D1002 - 01). This test gives a good indication 

of the adhesive behaviour in a joint and enables to assess the quality of 

the surface preparation by the analysis of the type of failure (see section 

4.6). 

 

 

Bulk and single lap joint specimens where tested after exposure to severe 

environments to evaluate the weatherability of the adhesive.  

Tg tests were also carried out to assess the service temperature of the adhesive. 

 
 

5.3 Adhesive bulk properties  
 

5.3.1 Specimen manufacture  
 
 
The adhesive properties can be obtained from a tensile test on a bulk specimen 

using a universal testing machine. The bulk specimen was manufactured using 

the mould presented in figure 51, designed by Costa and da Silva (2005 PESC 

project).Figure 48 shows the release agent application to the mould. This must be 

done before usage. The parts were heated to 45ºC in a hot press to speed up the 

cure reaction of the release agent.  
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Figure 48.  Release agent application.  

 

The various steps of the release agent application are (figure 48): (a) set the 

temperature controller to 70ºC to allow a rapid warming to 45ºC; (b) insert the 

parts into the press and warm them until they reach approximately 45ºC; (c) (d) 
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(e) after removing the parts from the press apply three layers of Loctite® 

770NC™. 

 

 A major difficulty in the manufacture of adhesive Araldite® 2021 is the pot time 

of ten minutes. The weighting and pouring had to be done in less than ten 

minutes, and it was difficult to distribute evenly without voids.  To solve this 

problem, a procedure was established that consisted of applying into the bottom 

plate of the mould approximately 25 applications of adhesive (up and down) as 

shown in figure 49 and 50. This method reduces the amount of air entrapment 

because it eliminates the weighting and enables to pour directly the adhesive on 

the mould. The number of applications was determined using a digital balance.  

 

The bottom mould plate had a silicone rubber frame (figure 52 and 53)  that 

seals the mould and stops the adhesive flowing out, resulting in a hydrostatic 

pressure over the adhesive which reduces the voids and promotes a better 

surface finish as stated by da Silva et al. [57].  The mould is composed of 

various parts (figure 51).  

 
 

Figure 50.  Adhesive application method. 

 
 

Figure 49.  Adhesive application 

(25 applications of adhesive up – 

red - and down –yellow). 
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Figure 51.  Mould parts. 

 

 

Figure 52.  Opened mould with spacers and silicone rubber frame in place. 
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Figure 53.  Adhesive plate manufacture according to NF T 76-142 [58]. 

 

After the top plate application, the mould is placed in a press and subjected to 2 

MPa pressure over 30 minutes of setting time at room temperature (25 ºC-28ºC) 

(cold pressing) . This is visible in figure 58. 

All the process preceding the introduction of the mould in the press, must not 

exceed 10 minutes, otherwise the cure initiation will lead to air entrapment. Some 

training was needed to get the best results. 

Thirty minutes later, the pressure was released and the mould was placed over 

the work table where it was opened to remove the bulk specimen for posterior 

machining in order to obtain the test specimen. Figure 54 shows the resulting bulk 

adhesive and the excess of adhesive that was removed. 

The next step is cleaning the mould and tools with acetone.  

 

In summary, there are 8 steps: 
 

1. Apply the release agent; 

2. Mount the mould, and place the silicone rubber frame; 

3. Apply the adhesive; 

4. Close the mould, placing the top plate; 

5. Insert the mould in the press machine at 2 MPa and room 

temperature over 30 minutes; 

6. Release the pressure and remove the mould; 

7. Open the mould and remove the bulk adhesive; 

8. Clean the mould and tools with acetone. 
 

 
Figure 54.  Bulk adhesive (left) 

and excess of adhesive (right). 
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Once the bulk adhesive is obtained, it is machined according to standard BS 

2787: Part 3 [59], as shown in figure 55. 

 
Figure 55.  Bulk specimen dimensions (all dimensions in mm). 

 

The pressure application is done with a press machine with heated plates. The 

heating feature allows to heat the mould parts to apply the release agent.  

 

Figure 56.  Intoco press machine. 
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It has two major control pannels for each function: the heat control pannel and the 

pressure control pannel with the motion control (see figure 56). 

 

Water is used to promote the press plates cooling . Figure 57 b shows the valve 

that controls the water flux. 

 

 

 

Figure 57.  Cooling the press plates. (a) Temperature controller set; (b) water valve 

opening. 

 

To cool the press plates the temperature controller must be set to 25º C (figure 

57a) and the valve which allows water to refrigerate the plates should be 

progressively opened (figure 57b) to avoid thermal stresses. 
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Eight adhesive bulk specimens were manufactured, referenced T1 to T8. The 

first four (T1 to T4) were placed inside an environmental chamber, promoting 

their weatherability (see section 4.5) together with single lap joint specimens. 

The last four specimens (T5 to T7) were tested as made in the tensile test 

machine. 

 
The adhesive cartridges used for the bulk specimen, the single 

lap joint specimens and the T-joint specimens are registered in 

table 15 and in figure 60. 

Table 15. Adhesive batch number and expiry date. 

Batch number Expiry date 
  

TA 583643 11/05 
  

TA 588353 03/06 
  

A
ra

ld
ite

®
 

20
21

™
 

ca
rtr

id
ge

s 

TA 590753 06/06 
 
 
 
 
To manufacture the three single lap joint specimens L1, L2 and L3 

a Loctite® 3030™ batch was used with the number 4KP373B and, 

expiry date 11/05 (figure 61). 

 
All the adhesive cartridges were used within the expiring date. 

 

Another important detail to register is the adhesive delivery nozzle attached to the 

cartridge. This delivery nozzle has four different steps at the tip with different exit 

diameters (figure 62). Cutting it at the best step allows obtaining an optimal flow 

for each application, as explained in figure 63. The fourth step (smaller diameter) 

allows a small amount of adhesive to flow with the best accuracy which is used 

for the single lap joint specimen manufacture. Cut #1 (bigger diameter) allows the 

highest rate adhesive deposition, used for the bulk specimen manufacture 

requiring a rapid pouring of the adhesive to avoid premature cure. Cut #2 has an 

intermediate diameter, allowing a good adhesive flow and also good accuracy, 

which was used to manufacture the T-joints. 

 
 

Figure 60.  Araldite® 2021™ cartridges with the batch 

number. 

 
 

Figure 61.  Loctite 3030 cartridge. 
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Figure 62.  130 mm Araldite 2021 cartridge pouring nozzle. 

 

 

Figure 63.  Different cuts for the 130 mm Araldite 2021 cartridge pouring nozzle. 
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5.3.2 Deformation measurement  
 

To measure the bulk specimen displacement the correlation method developed 

by Chousal [60] was used.  
 

The bulk specimen was placed in the tensile test machine together with a digital 

photography camera to register photos in sequence (spaced in time) for each 

test. This is visible in figure 64a and in the zoomed figure 64b where a 

background sheet was placed to help posterior image processing. 

 
 

a  
 b  

 

 
 

Figure 64.  Camera set to register photos of the bulk specimen in the tensile test machine. 

 

 

The bulk specimen was marked with two points, (figure 65a), used to measure 

the displacement in the successive photos, (figure 65b). 
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The small strain measurement using the numerical processing of digital images 

was done with the help of Prof. Chousal [60] . Basically it is the analysis of a 

sequence of digital images, taken over the time of the tensile test, which are 

divided in several sub-images that will be subjected to a Fast process of Fourier 

Transformations (FFTs – Fast Fourier Transforms), as shown schematically in 

figure 66. The photo taken in R0 moment suffers a Fourier transformation in 

order to “normalize” the noise and obtain a clear measure of the point 

(previously marked). This is compared with photo D0 taken in the next moment 

to determine the displacement. 

 

 
 

Figure 66.  Image processing with Fast Fourier Transforms [60]. 

 

  

Figure 65.  Specimen marked with the two points (a) and displacement while stretching (b). 
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5.3.3 Test results and discussion 
 

 The bulk specimen test data was recorded into files named after the 

specimen reference as T#.dat ( #  - from 1 to 8). These files were imported into 

spreadsheets to have the stress-strain curves, as shown in figure 67. 

 
Figure 67.  Tensile stress-strain curves (cross-head speed: 1 mm/min) of  bulk 

specimens T6, T7 and T8 (as made) . 

 

The stress-strain curves show a big scatter, especially in terms of ductility. This is 

probably due to the presence of voids that are difficult to control but have a great 

influence on the adhesive behavior. 

Table 16. Mechanical properties of Araldite® 2021™. 

Young’s modulus E → 1500 MPa 

Tensile strenght σr → 25 MPa 

Elongation at break εr → 40%  
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The mechanical properties presented in table 16 show that the adhesive is strong 

and ductile. When compared to a typical epoxy adhesive, Araldite® 2021™ has a 

lower strength but a higher ductility. The modulus compares well with the supplier 

data. 

 

5.4 Single lap joints (SLJs) 
 

5.4.1 Manufacture  
 
The joint geometry and dimension is presented in figure 69 (ASTM 1002). 

 

One batch of 6 specimens was done using Araldite® 2021™ and Loctite® 3030™  

adhesives. The three SLJs with Araldite® 2021™ were referenced A1, A2 and A3 

and the other three SLJs with Loctite® 3030™  were referenced L1, L2 and L3.  

The first few specimens were tested in a MTS tensile test machine with a grip 

arrangement that consists of a pin placed in holes of 8 mm in diameter (see figure 

69). These specimens (see figure 72) proved to be unworthy because they failed 

in the grip area due to high stress concentration near the hole for the pin (figure 

68).  

 

A different test machine (TINUS OLSEN – figure 71) was used in order to provide 

a better grip and avoid failure at the hole. This machine uses a different grip 

 
Figure 68.  Fractured Specimen 

in grip area. 

 

Figure 69.  Form and dimensions of the SLJ [61].  
Figure 70.  Loctite 3030 

overlap showing a 50 % 

cohesive failure. 

 
Figure 71.  Tinus Olsen test 

machine with a specimen. 
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arrangement, consisting of two jaws that grip the specimen uniformly (see figure 

71). This time, the specimen fractured in the substrate, away from the grip area. 

The failure load and failure mode for each test is registered in table 17. 

Table 17. Results from the tensile test done with the TINUS OLSEN machine. 

 Specimen Force [N] Stress [MPa] Failure 
A1 1666.0 33.32 Cohesive adherend 
A2 1822.6 36.46 Cohesive adherend Araldite 2021 
A3 1832.6 36.65 Cohesive adherend 
L1 656.6 13.13 Cohesive 50% 
L2 656.6 13.13 Cohesive 50% Loctite® 3030™ 
L3 1176.0 23.52 Cohesive 50% 

 

After the preliminary tests some modifications were made in the geometry of the 

grip area. Tab ends were used to guarantee that the specimen does not fail in 

grip area when loaded by the grip arrangement of the MTS machine. This new 

geometry also reduces the bending moment that occurs in the simple ASTM 1002 

specimen. The specimen dimension and geometry is presented in figure 73.  

 

To manufacture this specimen, a mould was used (figure 75) where packing 

shims control the glue line thickness and the overlap. Note that before bonding, 

there is the need to apply the release agent Frekote® 770 NC™ over the entire 

surface of the mould and the metal shims. 

The drawings of the mould are presented in Appendix I. 

 
Figure 72.  Fractured 

specimens – substrate 

cohesive failure. 

 
Figure 73.  SLJ specimen new version (dimensions in mm). 
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The procedure used to fabricate the single lap joint specimens was established 

as follows: 

1. Cleaning of the mould with acetone; 
2. Application of the Freekote® 770 NC™ release agent (mould is at 

45ºC); 
3. Cleaning of the PVC adherend surface with acetone (surface  

preparation); 
4. Application of the PVC substrates and tab ends and the 2,2 mm 

metal skins in the mould; 
5. Application of the adhesive in the overlap area (figure 74 a and b); 
6. Application of the top substrates; 
7. Application of mould lid; 
8. Insertion of the mould in the press with a load of 8900 N at room 

temperature for about 30 minutes; 
9. After 30 minutes, release the pressure and remove the mould to the 

work table; 

10. Remove the specimens from the mould. 

 

 
Figure 74.  Adhesive application in the SLJ. The yellow parts are the adhesive application areas 

and the metal shims are represented in blue. 
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Figure 75.  SLJ mould; (a) top PVC substrates ready to be placed; (b) top PVC substrates and skims in place; (c) 

closed mould ready to insert in the press. 

 

 

The SLJ specimens obtained were referenced and the dimensions (overlap, 

glueline thickness) were measured. These measures are registered in Appendix 

II. Five batches were manufactured and each batch contained six specimens. 

 

 

 

The total number of SLJ specimens was thirty referenced LSS1 to LSS30.  Four 

batches of six specimens were placed inside an environmental chamber for the 

weatherability tests. The last batch of six was tested “as made”. 
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5.4.2 Test results and discussion 
 
Each specimen was attached to the MTS tensile testing machine (figure 76 a) 

with an in-house gripping arrangement (figure 76 c). This was prepared over a 

proper workbench (figure 77) where the screws are fastened to 15 [N.m] and pins 

were used for proper specimen alignment (figure 76 c). 

 

 
Figure 76.  (a) Single lap joint specimen in the tensile test machine (MTS) and zoomed photo of the gripping set (b); (c) In-

house gripping tool arrangement in detail. 

 

Figure 77.  SLJ specimen grip tool setting for the 

tensile testing machine. 
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 The lap shear strength test data was recorded into files named after the 

specimen reference as LSS#.dat ( #  - from 1 to 30). These files were imported 

into spreadsheets to plot the load displacement curves (figure 78). 

 
Figure 78.  Load – displacement curves of the SLJs test (cross-head speed: 1 mm/min). 

 

The SLJ specimens LSS25 to LSS30 were tested after production, without 

weathtering.  

An elastic zone can be distinguished from 0 N to 1600 N. After 1700 MPa, plastic 

deformation occurs with the first visible necking which grows until fracture. 

The plateau in figure 78 corresponds to the plastic deformation. The specimen 

begins to create a neck (figure 79) resulting in section reduction and subsequent 

fracture. The fracture occurs in the substrate away from the overlap, resulting in a 

cohesive adherend failure. This failure takes place because the bond strength is 

stronger than the adherend. This SLJ test is like a tensile test of the PVC.  It is 

important to notice that the necking is more visible in the specimens as made, i.e. 

without weatherability. 
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Figure 79.  SLJ specimen (LSS30) with diffuse and localized necking. 

 

 

 
Figure 80.  SLJ fractured specimens. 

 

overlap 
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5.4.3 Stress analysis 
 

5.4.3.1 Closed form analysis 
 

There are some closed form models that allow predicting the stress distribution in 
single lap joints:  

 Volkersen (only shear); 

 Goland and Reisner (shear and peel); 

 Adams and Mallick (shear, peel , longitudinal). 

 

Using a software developed by Adams and co-workers [62] and considering the 
following entry data, the stress distribution according to each model can easily be 
obtained. 
 

Table 18. Single lap joint entry data used in V.C. Joint v.1.0. 

Upper Adherend Thickness (mm) = 2.0000 
Adhesive Thickness (mm) = 0.2000 
Lower Adherend Thickness (mm) = 2.0000 
Overlap Length (mm) = 12.5000 
Joint Width (mm) = 25.0000 
Load (N) = 1500.0000 
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Temperature (deg C) = 0.0000 
 

Upper Modulus E11 (GPa) = 2.6000 
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Upper Thermal Expansion 22 (per deg C) = 0.0000 
 

Lower Modulus E11 (GPa) = 2.6000 
Lower Modulus E22 (GPa) = 2.6000 
Lower Modulus g12 (GPa) = 0.9630 
Lower Poisson's v11 = 0.3500 
Lower Poisson's v12 = 0.3500 
Lower Poisson's v22 = 0.3500 
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Lower Thermal Expansion 22 (per deg C) = 0.0000 
 

Adhesive Modulus E11 (GPa) = 1.1430 
Adhesive Modulus E22 (GPa) = 1.1430 
Adhesive Modulus g12 (GPa) = 0.4233 
Adhesive Poisson's v11 = 0.3500 
Adhesive Poisson's v12 = 0.3500 
Adhesive Poisson's v22 = 0.3500 
Adhesive Thermal Expansion 11 (per deg C) = 0.0000 Ad
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Adhesive Thermal Expansion 22 (per deg C) = 0.0000 
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Figure 81 shows that the adhesive shear stress for this particular loading case 

(1500 N –value before rupture of the SLJ with Araldite® 2021™  as shown in 

figure 78) assumes a maximum value of nearly 30 MPa. The mininum value is 0 

MPa.  

 

Figure 81.  Volkersen analysis. 

 

Figure 82.  Goland and Reissner analysis. 
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In figure 82, the maximum value for the adhesive shear stress (red line) is nearly 

30 MPa, and the minimum value is very close to 0 MPa. The adhesive peel stress 

minimum value is 0 MPa and the maximum 27 MPa. 

    

The analytical models are applicable when the adhesive is flexible in relation to 

the susbtrate, which does not occur in the present case. For example, for the 

Goland Reissner analysis [36], the range of application is given by: 

 

1.0
13

31 ≤
Gt
Gt

 and 1.0
13

31 ≤
Et
Et

  Eq. (5.1 and 5.2) 

 

In the present case: 
 
t1 = 2 PVC 
t2 = 2 PVC 

t3 = 0,2 
Araldite 
2021 

   
E1 = 2.6 PVC 
E2 = 2.6 PVC 

E3 = 1.143 
Araldite 
2021 

   
G1= 0.963 PVC 
G2= 0.963 PVC 

G3= 0.4233 
Araldite 
2021 

 
resulting in : 
 

396,4
13

31 =
Gt
Gt

 >>0.1 

 

396,4
13

31 =
Et
Et

>>0.1 

⇒ 
The result is clearly greater than

10
1

, 

confirming that this single lap joint is out of 
the application range of the Goland and 
Reissner model. 

 

Figure 83 shows the results of the Adams & Mallick model. This model enables to 

have the longitudinal stress in addition to the shear and peel stress. 
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The analytical models have the advantage of being easy to manipulate, and are 

the preferred method of analysis for design purposes. However when they are not 

applicable in research context, the designer has to use other tools such as the 

finite element analysis. 

 

 

 
 

Figure 83.  Adams and Mallick analysis graph plot. 
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5.4.3.2 Numerical analysis (finite element method) 
 
The commercial code ABAQUS/CAE Version 6.5-1 was used to determine the 
stress distribution.  
 
A model was created with three distinct sections as shown in figure 84. 
 

 
 
 

Figure 84.  Sections and material attributes of SLJ Specimen - schematic.   

 
The boundary conditions and loading are shown in figure 85, which intend to 

simulate the experimental test. 

 
 

 
 

Figure 85.  Boundary condition  - Schematic. 

 
 
The mesh density has a big influence on the results. Therefore a convergence 

analysis was carried out where the mesh density is plotted against the 

corresponding maximum stress (figure 86 and 87). 

 

 

Nonlinear geometry (Nlgeom) was considered to include the nonlinear effects 

present in single lap joints due to the bending caused by the eccentricity of the 

load (see chapter 4). 
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Figure 86.  Maximum shear stress versus mesh density (number of elements). 

 
Figure 87.  Maximum shear stress versus mesh density (element area-1). 

 
 
Figure 86 and 87 show that the maximum stress is dependent on the mesh 

density up to mesh 7. From mesh 8 the stress is more stable and converge for a 

value of 30 MPa . Mesh 8 is represented in figure 88. 
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Figure 88.  Mesh 8 (overlap). 

 

The adhesive shear and peel stress are represented in figure 89 and 90. It is 

interesting to note that the maximum stress at the ends of the overlap compare 

reasonably well with the closed form analysis. However in the middle of the 

overlap the analytical models are not in accordance with the FEA. 

 

Figure 89.  FEA adhesive shear stress distribution. 
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Figure 90.  FEA adhesive peel stress distribution. 

 

Figure 90 shows that for 1500 N, the peel stress (σ22) in the adhesive is higher 

than its ultimate strenght (σr = 25 MPa), however the failure occured in the PVC. 

This is because the tensile test (bulk specimen) was carried out at a strain rate 

much lower than that experienced by the adhesive when in a single lap joint. 

Bulk  min02.0
)(50

min1
=≈

lengthgaugemm
mmratestrain  (Eq. 5.1) 

 

SLJ  min5
)(2.0

min1
=≈

thicknessadhesivemm
mmratestrain  (Eq. 5.2) 

 

The strain rate is much higher in a single lap joint and it is known that the higher 

the strain rate, the higher the adhesive strenght is, especially for ductile 

adhesives. 

Adhesives are sensitive to strain rate effects and adhesive properties should be 

determined using the same strain rate that the adhesive will experience in a joint. 
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The following figures present contour plots of shear and peel stress in the SLJ. 

 

 
 
 
 

 
Figure 91.  Shear stress contour plot. 

 
The shear and peel stress in the adhesive peak at the ends of the overlap, 
which is in accordance with the line plots of figure 89.  
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Figure 92.  Peel stress contour plot. 
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Figure 93.  Stress (σ11) contour plot. 

 
Figure 93 shows the critical area (red) in the PVC adherend at the end of the 

overlap. This confirms the experimental tests results where the PVC failed close 

to overlap. 
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5.5 Weatherability  
 

The weatherability is the result of material exposure to the weather. It is a 

complex phenomenon, dependent on several factors explained in table 19. 

 

Table 19. Degradation parameters or factors of materials [63]. 

Parameter Typical range Comments 

UV radiation  
(sunlight) 295 to 380 nm 

UV radiation in this range is found in the sun radiation. 
UV radiation below 295 nm causes degradation that does 
not occur in real life 

Air temperature -40 to 40ºC 
Air temperature is rarely the same as the material 
temperature because materials also absorb infrared 
radiation 

Material temperature -40 to 110ºC 
Actual material temperature is a composite of air 
temperature, effect of infrared radiation, effect of wind, 
and surface evaporation of water. Material temperature is 
a parameter which must be selected for testing. 

Rain 0 to 2500 mm/year Rain is important because it washes away material 
components at its surface (e.g., acid rain). 

Relative humidity 10 to 100% The relative humidity degrades some components of the 
material and promotes deposition of pollutants. 

Pollutants Variable 
Pollutants include carbon oxides, ozone, oxides of sulfur 
and nitrogen, radicals, dust particles. These pollutants 
can be deposited by rain to become more aggressive 
degradants 

Stress Variable 
 

Materials degrade more rapidly under a mechanical 
stress 

 

 

 Weatherability plays an important role in the mechanical behaviour of a material 

and in its lifetime. Windows and doors are applied in the house interface to 

prevent the weather factors (such as hot air in the summer, cold air in winter, rain 

and sun) to change the optimal climatic conditions inside the house. The effect of 

the weather agents on these elements should be controlled and minimized. 

 

Due to the polymeric nature of both adherend and adhesive, the weatherability is 

particulary important and this point should therefore be studied. 
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5.5.1 Weatherability factors  
 
For polymeric materials, the most relevant factors of degradation are 

photodegradation, water absorption and  temperature.  

 

i. Photodegradtion  
 

This is the most relevant aspect of polymers weatherability. Solar spectra contain 

substantial ultraviolet radiations (between 0.28 and 0.4 µm in wavelength) shown 

in figure 94, which carries energy that photoexcites certain polymeric groups with 

a selective absorption. 

 

 
 

Figure 94.  Solar spectrum [64]. 

 
Due to UV or oxygen impermeability of the polymer, this weatherability is 

essentially a surface phenomenon. In most cases there is an oxidation aided by 

the UV radiation. This oxidation leads to polymer chain rupture, affecting the 

mechanical properties by reducing the failure strength. 

 

In PVC and polymers with benzenes (polystyrene, polycarbonate, etc.), the 

photo-oxidation drives to colored structures (yellowing). 
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ii. Temperature effect 
 
Thermal ageing implies a slow and irreversible evolution of the structure, the 

composition and the morphology of materials, related to their exposure to higher 

or lower temperatures. This effect occurs as a result of physical or chemical 

mechanisms. 

 

The general effect is observed in figure 95 where the lifetime is defined as time 

versus property with temperature. 

 

 
 

Figure 95.  Curves for the development of one property for three different 

temperatures, with the lifetime determination for a given lifetime criterion ( PF). 

 
 

iii. Water absorption 
 
Water can easily penetrate inside the macromolecular chains, breaking their 

interconnection, leading to an increase in mobility. This mobility increase is 

characterized by an increase in ductility and a reduction in the Young’s modulus 

as shown in figure 96. Normally this is reversible when the polymer dries in an 

oven. 
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Figure 96.  Typical evolution of a Young’s modulus when a polymer is 

immersed in a liquid medium. 

 

iv.Hydrolytic weatherability 
 

Some polymers contain hydrolysable groups in their chains, susceptible to 

weathering in humid atmosphere or in water immersion. Hydrolytic weatherability 

occurs when water promotes the split of a chemical bond, often splitting one 

compound into two. This reaction leads to a chain rupture and an important 

ductility reduction, making it brittle with time. 

 

 

The polymer life can be expressed by tF [65]: 

 
 ( ) )exp( RTERHKt HF ⋅⋅= −α  Eq. (5.3) 

 
 
K  ⇒ constant 

RH  ⇒ Relative humidity 
α  ⇒ Constant near unity (1) 

HE  ⇒ Hydrolyses activation energy 

R ⇒ Perfect gas constant 
T ⇒ Temperature 
 
Note that water absorption effects have a major impact in weathering than the 

hydrolysis, but the difference resides in their irreversibility. Water absorption is 

reversible by drying processes, but hydrolysis is irreversible. 
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5.5.2 PVC and acrylics weatherability 
 
The two polymers studied in this work are PVC and acrylic. Their weatherability is 

specified in detail, next. 

 

i. PVC 
 
 
PVC is susceptible of dehydrochlorination under the action of heat, UV light, 

oxygen, radiations, etc. This process occurs when a hydrogen and an adjacent 

chloride atom are subtracted upon heating, to form a double bond that 

disintegrates the chains with elimination of hydrogen chloride and formation of 

sequential double carbon-carbon bonds in macromolecules with the 

appearance of undesirable coloration (from yellow up to black).  Some major 

improvements have been done recently to reduce this effect by using fillers and 

compounds such as titanium oxide TiO2 [66,67]. The PVC profiles used in 

window and door production contain these fillers and compounds and have 

good resistance to weather degradation. 

 

Elvira B. Rabinovitch [64] states that PVC performs well in both color retention 

and impact retention compared to other polymers. The buckling strength of PVC 

profiles were measured as shown in table 20. 

 
 

Table 20. Additional stress to cause the buckling of polymers in a window profile [64]. 

Coefficient of 
linear thermal 

expansion 

Safety margin (additional 
stress to cause buckling) in 

[MPa] Material 

cm/cm ºC 

Heat 
defelection 

temperature, 
ºC White PVC Brown PVC 

Rigid PVC 2.1 x10-5 68 6.0 3.5 

High heat PVC 1.9 x 10-5 74 6.9 5.0 

Glass Fiber reinforced PVC 0.9 x 10-5 73 18 15 
 
 
From the previous table we can conclude that buckling resistance is better with 

a low coefficient of linear thermal expansion. Elvira also indicates that PVC 

usually has superior microbial resistance.  

 

The DECOM 1010 PVC studied in this work is near to high heat PVC (white 

PVC). 
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ii. Acrylic (PMMA) 
 
PMMA has a good stability to outdoor exposure.  In fact its weatherability 

resistance is referred as one of its most outstanding property [68,56]. However, 

acrylics are chemically attacked by ketones, esters, aromatic and clorinated 

hydrocarbons. This should be taken into account when working with these 

products, mainly the ketone used to clean the surfaces before bonding. 

 

It is also known that the PVC is compatible with acrylic adhesives, but can be 

attacked by their activators before the adhesive has cured [56]. However, in the 

case of Araldite®2021™  the activator is mixed with the acrylic resin through a 

mixing nozzle before contacting the surface of the PVC, avoiding the direct 

contamination and not allowing this chemical attack. 
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5.5.3 Testing conditions 
 
Testing for weatherability means subjecting a specimen to the environmental 

conditions that the joint will normally experience in service. These tests should be 

done over several months or years. There is however an established time for 

these tests, of about 104 hours (a year and two months), that allows predicting the 

mechanical properties over a longer period of time by extrapolation of the results 

obtained for 104 hours. There is little variation of the properties after 104 hours, 

and the major degradation of the properties occurs in the first 2000 hours (three 

months) of the test [33]. 

 

In this work, the time available was limited to twelve months, so there was the 

need to plan accelerated weathering tests. There was also the limitation of the 

light exposure, because it was done inside an environmental chamber without an 

UV lamp. However, from previous studies, the two materials (PVC with fillers and 

PMMA) have a good resistance to U.V. radiation so there should be no problems 

in this field. 

 

Single lap joint specimens PVC - Araldite® 2021 and Araldite® 2021 bulk 

specimens were tested for residual strength after weathering. The single lap joint 

specimens are important to determine the effect of weathering on the adhesion 

and the bulk specimens enable to assess the direct influence of temperature and 

relative humidity on the adhesive.  

 

In the Araldite® 2021 product specification sheet, there is a reference to tropical 

weathering test, using DIN 50015 standard as a reference. The conditions of this 

tropical weathering are 40 ± 2 ºC and 92 ± 3% of relative humidity.  

 
However in this study it was decided to use different conditions to simulate the 

Portuguese climate with a more severe temperature (60ºC maximum and a 

relative humidity which can reach 80%). The most severe climatic conditions of 

Portugal were taken into account. The highest values of temperature and 

moisture were obtained by consulting the Portuguese meteorology authority 

(Instituto de Meteorologia e Geofísica) internet site. To confirm these values the 

temperature on some windows applied in the Alentejo region (hottest) was 

measured on the door surface (figure 97). The value obtained for the exterior 

surface temperature of the door exposed directly to the sun was of 56ºC in 

September 10th 2005 with an ambient temperature of 35 º C. 

 
Figure 97.  Door in Quinta do 

Peral, Alentejo.  
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Based on the previous data, the tests were carried out at a temperature of 60ºC 

and a relative humidity of 80%, as shown in figure 100. 

 

 
Figure 100.  Weiss Technik Digital Controller. 

 

 

Twenty four single lap joint specimens (4 sets of 6 specimens), and 4 bulk 

specimens of Araldite® 2021, were placed in the environmental chamber (see 

figure 98 and 99). The time of exposure of each specimen is indicated in table 21. 
 

 

 

 

 

 

 

Table 21. Specimens time of exposure inside the environmental chamber. 

Specimen 
reference 

 Type 
of specimen 

 Days of exposure inside the 
environmental chamber 

     
LLS1 to LSS6  Single Lap Joint  
T1  Bulk Araldite® 2021  11 

     
LSS7 to LSS 12  Single Lap Joint  
T2  Bulk Araldite® 2021  49 

     
LSS13 to LSS 18  Single Lap Joint  
T3  Bulk Araldite® 2021  79 

     
LSS19 to LSS 24  Single Lap Joint  
T4  Bulk Araldite® 2021  105 

 

 
 

Figure 98.  Weiss Technik 

environmental chamber. 

 
Figure 99.  Specimens placement 

inside the environmental chamber. 
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The weathered specimens were tested a few hours after removal from 

environmental chamber. 

The manufactured Araldite® 2021™ Bulk specimens (T5, T6, T7 and T8) were 

tested in order to obtain the adhesive mechanical properties. The weathering 

effects were measured testing T1 (11 days of weathering), T2 (49 days of 

weathering), T3 (79 days of weathering) and T4 (105 days of weathering) 

specimens.  

 

5.5.4 Bulk results and discussion 
 
The tensile stress-strain curves of the specimens subjected to temperature and 

relative humidity are shown in figure  101. 

This figure shows T3 (79 days) having the higher value for elongation, T2 (49 

days) has the second best elongation value. T1 (11 days) and T4 (105 days) 

shows a lower elongation value when compared to the other two. The same trend 

occurs for the tensile strength. T3 specimen gives a tensile strength of 33 MPa, 

T2 32 MPa, T1 30 MPa and T4 27 MPa. 

 
Figure 101.  Stress-strain curves (cross-head speed: 1 mm/min) of the adhesive bulk 

specimens T1 (11 days) , T2 (49 days), T3 (79 days) and T4 (105 days). 
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These results show that in the first 79 days, the adhesive gets stronger and 

more ductile. However, after 105 days the effect of weathering is the opposite. It 

is as if initially the effect of the humidity is dominant (ductility increases) and 

after a period of time, the temperature effect gets more important (more brittle). 

The temperature “over cures” the adhesive making it brittle.  

Figure 102 includes the tensile stress-strain curve of a specimen without 

weathering for comparison purposes. 

Figure 102.  Graph plot of the adhesive bulk specimen tensile tests (cross-head speed: 

1 mm/min)  before (as made) and after weathering (T1, T2, T3 and T4) . 

 

 
 
The weather is clearly favourable up to 79 days but is detrimental after 105 days. 

However, these results should be analysed with caution because only one 

specimen was tested for each weathering case. These tests need confirmation 

with more specimens.  
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5.5.5  Single lap joint test results 

 
Figure 103.  Load-displacement curves of the aged single lap joint specimens (cross-

head speed: 1 mm/min). 

 

The results after weathering are shown in figure 103. The load-displacement 

curves do not differ significantly with the time of ageing. 
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To assess the effect of weathering, figure 104 presents a graph plot with the 

weathered specimens and the as made specimens. 

Figure 104.  Effects of weathering on the load-displacement curves of single lap joint 

specimens (cross-head speed: 1 mm/min). 

 

Figure 104 shows that the single lap joint specimen toughness decreases with the 

weathering effect. A ductility reduction and a rise in the failure load are also 

observed. The brittleness effect is very visible with the total inexistence of 

elongation for the weathered specimens in opposition to the high elongation when 

the specimens are tested as made. 

It is important to notice that the failure occurs in the adherend, i.e. the 

displacement is mostly from the PVC, rather than the adhesive. Therefore the 

change in mechanical behaviour of the SLJ with exposure to temperature and 

RH is mostly due to the PVC. The weatherability tests therefore confirm that the 

adhesive is suitable for this application because the adherends (PVC) are 

degraded more severely than the adhesive. 
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5.6 Tg determination 
 
 
The glass transition temperature plays an important role in the adhesive 

mechanical behavior, making crucial its determination because it will output the 

temperature range suitable for the adhesive to maintain its mechanical 

properties namely strength (generally decreasing with temperature raising) and 

ductility (generally increasing with temperature raising).  

In this particular case, the adhesive should withstand temperatures ranging 

from 0º C to 60ºC, so it will work well together with the PVC substrate. 

A bulk specimen was first used, but the results were not conclusive due to its 

low rigidity, not allowing to obtain a good test. To solve this problem, the 

adhesive was cast over an aluminum bar to increase the rigidity of the 

specimen, as shown in figure 107. 

 

 

 
Figure 105.  Mould spatial 

organization. 

 
 

Figure 106.  Silicone rubber 

frame and the aluminum 

bases. 

 
Figure 107.  Specimen sketch. 
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A procedure was improvised to speed up the manufacture of two specimens. 

This technical procedure is detailed over next lines: 

 

1. Application of the release agent over the bulk specimen mould surface; 

2. Placement of the silicone rubber frame as shown in figures 105 and 

106. 

3. Shot blasting of the aluminum base and degreasing with acetone; 

4. Apply Araldite® 2021™ on the aluminum base; 

5. Close the mould; 

6. Specimens removal, after 30 minutes of curing time (figure 108). 

 

The specimens were cleaned and referenced (figure 109 and 110), and finally 

machined in order to obtain the best geometry for placement in the DMTA glass 

transition temperature test machine. The test was done with the help of Pedro 

Nóvoa from INEGI. 

The method used to determine Tg was the thermo-mechanical analysis which 

subjects the specimen to a known sinusoidal vibration while the temperature 

rises. The phase difference, δ, between the two signals (σ -stress and ε -strain) 

is a measure of the molecular mobility of the polymer. δ (or tan δ) peaks at Tg. 

The Tg may also be defined by the complex modulus that includes the storage 

modulus (E’) and the loss modulus (E’’). The complex modulus is the ratio of the 

dynamic stress to the dynamic strain. The storage modulus refers to the ability 

of a material to store energy and is related to the stiffness of the material. The 

loss modulus represents the heat dissipated by the sample as a result of 

molecular motions and reflects the damping characteristics of the material. 

Figure 111 shows E’, E’’ and tan δ as a function of temperature. E’ changes 

most rapidly with temperature at Tg and E’’ peaks at Tg. The Tg given by E’ and 

E’’ are very close. However the tan δ peaks at a slightly higher temperature than 

as E’, since '
''

tan E
E=δ .  

 

Bellow and above Tg, the damping is low. At Tg there is a peak corresponding 

to the maximum energy dissipated hence maximum damping. Therefore, if the 

damping peak can be measured as a function of temperature then Tg can be 

found [34]. 

 
Figure 108.  The result set of 

the two specimens 

 
Figure 109.  Specimens. 

 
Figure 110.  Specimens marked 

with the code PMTg1 and 

PMTg2. 
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Figure 111.  E’, E’’ as function of temperature [34]. 

 

The test results are plotted in figure 112. This graph contains the gain modulus, 

E’, and the loss factor, tan δ, for each specimen.  The glass transition 

temperature (Tg) corresponding to the tan δ peak is approximately 131 ºC. 

 

 
Figure 112.  Glass transition temperature graph for Araldite 2021. 
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The Araldite 2021 Tg is higher than the substrate (PVC DECOM 1010), known 

to be near 75ºC - 85ºC from experimental testing done wile working in industry. 

Therefore the adhesive will not be a weak link in terms of temperature. 
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C h a p t e r  s i x  

T-JOINT 

6.1 Introduction 
 
The major goal of this study is to develop an adhesive T-joint with a better 

performance than the existing fastened T-joint, in terms of mechanical behaviour, 

production and economical impact.  

The T-joint geometry used industrially is represented in figure 113, where the 

transom (P2030/P2031) is joined to the base (P200/P2010) through a T 

accessory (P2090/P2091). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 113.  T-joint used in the windows framework 

industry. 
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6.2 Manufacture 
 
The purpose of this thesis is to study the applicability of adhesive bonding in 

transom connection in an industrial context. Figure 115 describes the process of 

adhesive bonding. First, the adhesive is applied to the T accessory P2090 

surfaces which will be in contact with the transom interior (a), after which it is 

placed inside the transom (b), and then the adhesive is applied to the T 

accessory P2090 bottom (c) which finally is glued to the exterior window frame 

P2000 (d). The adhesive is applied with a proper handgun, as seen in figure 

114. After the process, that takes approximately five to ten minutes, the 

adhesive is already able to withstand the transom weight and can be moved if 

necessary to cure completely and achieve its best performance. 

 

Figure 115.  Transom connection by adhesive bonding. 

 
Figure 114.  Araldite Eco Gun 

50 ml. 
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In figure 116 the resulting T-joint specimen is shown. 

 
Figure 116.  Different views of the adhesive bonded T-joint specimen. 

 

Figure 117 shows the different parts composing the T-joint specimen. 

 

 

 

Figure 117.  Parts composing  the T-joint specimen (P2000 and P2030 already 

reinforced). 
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6.3 Testing conditions 
 
Two specimens were made to assess the effect of the type of loading. One of 

them (250 x 320 T – figure 118 left) is fastened to a reinforcement bar attached to 

the jig, simulating the case of a rigid base with no deformation. The other one is 

fastened directly to the jig (350x320 – figure 118 right) through two bolts at each 

end of the base. This set up is closer to reality where the window frame is allowed 

to deform. The drawings and specimens details are presented in Appendix IV. 

 

6.3.1 Jig 
 
A jig was designed to test the two kinds of specimens (figures 119 and 120). 

 
Figure 118.  T-Joint specimens geometry – Fastened to the jig with a 

reinforcement bar (left). Fastened directly to the jig (right). 

 
 

Figure 119.  T-Joint test jig. 
 

Figure 120.  T- Joint test jig – Exploded view (left). 
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To forecast the force that the jig can withstand, the following analysis was carried 

out. 

 
The problem was assumed to be a simple bending case as shown in figure 121 

and 123. The yield stress at the base of the transom can be expressed by : 

 

yy

f
yield W

M
=σ  (Eq. 6.1) 

 

Where: 

yieldσ  ⇒ PVC yield strength.  

fM  ⇒ Bending moment. ( F x distance ) 

yyW  ⇒ Bending resistance modulus along yy axis.  

 

The PVC Decom 1010 yield strength is 45 MPa or 45 N/mm2 (supplier data in 

appendix V). 

The bending moment is :  

 [ ]mmNFMdistFM ff ⋅×=⇔×= 320.  Eq. (6.2) 

. 

The bending resistance modulus is determined by: 

 

maxz
I

W yy
yy =  Eq. (6.3) 

 

Where: 

yyI  ⇒ Cross section moment of inertia along yy axis. 

maxz  ⇒ Most distant point in the cross section. 

 

The moment of inertia of the PVC and steel assembly is 

[ ] [ ]44 35000035 mmcmI yy ⇒= . 

 

Figure 124 shows the transom profile (P2030) and reinforcement steel (P2063) 

and table 22 gives the inertia values. The inertia of the PVC profile and the 

reinforcement were considered to obtain the section inertia.  

 
 

Figure 121.  Static scheme of 

test position 1. 

 
 

Figure 122.  (A-A) Cross section 

of the horizontal transom of figure 

106 with the force applied over 

the center of gravity. 

 
 

Figure 123.  3D representation 

of the joint. 
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Figure 124.  P2030 and P2063 inertias. 

 

According to figure 122, the most distant point in the cross section from the yy 
axis is 40 mm. 
 

Substituting equation 5.2 and 5.3 in equation 5.1, results: 

 ( )
dist

zI
F yyyield

yield
max⋅

=
σ

 (Eq. 6.4) 

 
 

which gives a yielding load of : 
( ) [ ]NFyielding 1231

320
4035000045

=
⋅

= . 

 

The jig was designed to resist a load higher than 1231 N. 
 

After some considerations, the test jig shown in figure 112 was used. Details of 

the construction and design can be found in Appendix III. 

 

6.3.2 Test positions 
 
 
The specimens were tested in three positions in order to simulate the three 

loading conditions defined in figure 10. The most critical position in practice is 

position 2 reflecting the window pressure (table 23). The test positions are shown 

in figure 125.  

Table 23. Relation between figure 125 and figure 10. 

Figure  125  Figure 10 
Position 1 → Weight 
Position 2 → Wind pressure 
Position 3 → Window closing force 

 

Table 22. Inertia values 

(transom and its steel reinforcement). 

Position 1 
Iyy = 35cm4 

Izz = 41.29   cm4 

Z 

y 
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6.3.3 Specimen grip 
 
Position 1 (figure 126a) is fixed directly to the load cell with a fastener. Position 

2 (figure 126b) and position 3 (figure 129c) need a special fork shaped tool to fix 

the specimen in the tensile machine  

 

Figure 126.  Gripping arrangement (a) position 1; (b) position 2 (fork tool); (c) position 

3 (fork tool). 

 
Over the grip area, steel packings were inserted inside the PVC to guarantee a 

proper grip of the specimen. This is shown in figure 127, with a single steel 

packing for the transom (P2030) and a double steel packing for the base (P2000)  

 
Figure 127.  Steel packings. 
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6.3.4 Reinforcement bar 
 
To avoid the bending of the base profile (P2000), a reinforcement bar was 

placed inside this profile and the bar was bolted to the jig (figure 128 b). This 

loading gives a higher failure load because there is no bending of the base 

profile. However, in practice the base is allowed to bend. 

 

 
 

Figure 128.  Specimens fastened to the jig. (a) Without reinforcement; (b) With 

reinforcement inside the base profile (P2000). 

 
This situation was simulated by attaching the base to the jig without 

reinforcement as shown in figure 128 a. 

 

 

 

 
 

Figure 129.  (a) Fastening test scheme with the reinforcement bar, avoiding the 

bending of the base (b) and without the reinforcement bar resulting in base bending.   
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6.4 Test results 

 
6.4.1 Mechanism of failure 
 

6.4.1.1 Joints fastened with screws 
 
The load was applied and at some point, the T-joint accessory (P2090) started to 

lift from the basis profile (P2000), initiated a fracture and finally broke apart, as 

shown in figure 130 a and c. P2090 accessory clearly fractures near the base as 

shown in figure 130 b and d.  

 

 
Figure 130.  PT2A mechanically Fastened T-joint specimen (test position 1); (a) joint fracture and lifting; (b) P2090 

fracture; (c) joint fracture side view; (d) P2090 fractured. 
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As the transom lifts from the base, it crashes the base profile on the opposite side 

as shown in figure 131. 

 

 

Figure 131.  After fracture T junction in detail. 

 

 

The T-joint accessory (P2090) final failure was identical for the three positions 

(figures 132 and 133) but the initiation was related to the test position. The 

registered fracture loads were different due to the different test positions, that lead 

to different stress distribution and resistant area.  
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Figure 133.  PT4A mechanically Fastened T-joint specimen (test position 3); (a) joint fracture 

and lifting; (b) joint fracture side view; (c) joint fracture down view. 

 
Figure 132.  PT5A mechanically Fastened T-joint specimen (test position 2); (a) joint fracture and 

lifting; (b) joint fracture side view; (c) PT3A P2090 fractured. 
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6.4.1.2 Adhesive joints 
 
The bonded T- joint specimens (figure 116) were also tested with the same 

testing conditions as the fastened specimens. 

Figure 134 shows the failure mechanism for position 1. In this case, P2090 

accessory does not fracture. Instead, the joint suffers a cohesive failure where 

adhesive remains in each fracture surface – P2090 bottom and P2000 top faces. 

In some points the failure occurs in the PVC base (P2000).  

The described failure occurs for the other two test positions (figure 134, 135 and 

136), however the failure occurs at different stress values. 

 

 
Figure 134.  Bonded T-Joint specimen PT1CR (test position 1); (a) PT1C specimen being tested; (b) joint lifting and 

failure; (c) PT4CR joint failure side view; (d) PT4CR joint failure view. 
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Figure 134 shows PT4CR specimen tested in position 2. A detailed view of the 

joint area shows that P2090 accessory did not fracture. The failure occurs in the 

adhesive opposite to the load orientation. 

 

 
Figure 135.  Bonded T-Joint specimen PT4CR test position 2. 

 

Figure 136.  Bonded T-Joint specimen PT5C test position 3. 

 

Figure 136 shows PT5C specimen tested in position 3. The failure detail shows 

that the P2090 does not fracture, and the failure is cohesive.  
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6.4.2 Load-displacement curves 
 
The digital files of the tensile testing machine were referenced as follows: 

Table 24. Digital file codenames. 

PT#A.Dat Provete em T Aparafusado (screwed T Specimen); 

PT#C.Dat Provete em T Colado (adhesive T Specimen); 

PT#AR.Dat Provete em T Aparafusado Reforçado (screwed T Specimen reinforced); 

é

 

PT#CR.Dat Provete em T Aparafusado Colado (adhesive T Specimen reinforced). 

 

The cardinal sign (#) is substituted by the test number from 1 to 6. 

In the next table, the PT files and the testing condition can be related. 

Table 25. Relation between testing condition and PT files. 

 file Test position Reinforced test T-joint type of 
fastening 

     
PT1AR.Dat 1 R screws 
PT2AR.Dat 1 R screws 
PT3AR.Dat 2 R screws 
PT4AR.Dat 2 R screws 
PT1C.Dat 1 - Araldite 2021 
PT2C.Dat 1 - Araldite 2021 
PT3C.Dat 2 - Araldite 2021 
PT4C.Dat 2 - Araldite 2021 
PT5C.Dat 3 - Araldite 2021 
PT6C.Dat 3 - Araldite 2021 
PT1A.Dat 1 - screws 
PT2A.Dat 1 - screws 
PT3A.Dat 2 - screws 
PT4A.Dat 3 - screws 
PT5A.Dat 2 - screws 
PT6A.Dat 3 - screws 
PT1CR.Dat 1 R Araldite 2021 
PT2CR.Dat 1 R Araldite 2021 
PT3CR.Dat 2 R Araldite 2021 
PT4CR.Dat 2 R Araldite 2021 
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6.4.2.1 Test position 1 without reinforcement bar  
 
The tensile testing machine data was imported into a spreadsheet and the 

following load-displacement curves were plotted.  

 

 
without reinforcement bar 

 

 

Figure 137.  Load-displacement curves of PT1A, PT2A, PT1C and PT2C specimens  Test Position 1  
(cross-head speed: 1 mm/min). 

Figure 137 registers the tests done with the screwed T-joint specimens PT1A 

(dark blue line) and PT2A (light blue line). At approximately 200 N a crack initiates 

in the T-joint accessory (P2090) and complete fracture occurs at 25 mm of 

displacement for the PT1A. The load keeps increasing because the base profile is 

still supporting the transom, but the T-joint failure load was considered to be the 

failure of P2090 accessory. T- joint accessory (P2090) failed at 550 N force value 

in the case of specimen PT2A and 300N for the PT1A. 

Figure 137 also shows adhesive bonded specimens PT1C (red line) and PT2C 

(pink line). The red line has a first drop in load at 250 N and then at 800 N 

representing two distinct points of the T-joint accessory (P2090) lifting from the 

base (P2000). However the complete cohesive failure only occurs at 1100 N for a 

20 mm displacement. The rest of the curve represents the bending of the transom 

supported by the base profile (being crushed). The pink line (PT2C)  is very 

similar to the red, registering a cohesive failure at 1000 N for 10 mm of 

displacement. 
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6.4.2.2 Test position 1 with reinforcement bar  
 

 
with reinforcement bar 

 

 

 
Test Position 1 Figure 138.  Load –displacement curves of PT1AR, PT2AR, PT1CR and PT2CR specimens 

(cross-head speed: 1 mm/min). 

 

The blue lines in the graph of figure 138 are the joints fastened with screws 

(PT1AR and PT2AR). In PT1AR (darker blue), there is a first stage at 200 N 

corresponding to some instability mostly due to grip accommodation. It is only 

near  800 N that the T accessory (P2090) fractures. PT2AR (lighter blue) breaks 

at 1100 N for a displacement of 30 mm. The 1100 N failure load is very close to 

the one predicted earlier for the jig design (1231 N). 

 

The adhesively bonded joint specimens (PT1CR and PT2CR) are the red and 

pink lines. They have a very similar behaviour. In PT1CR (pink) there is a first 

drop at 700 N that represents the T accessory (P2090) starting to lift from the 

base (P2000). However it remains bonded until the second drop at 800 N and a 

20 mm displacement when the complete cohesive failure occurs. PT2CR (red) is 

very similar, with the first drop at 900 N and complete failure at 1000 N for a 30 

mm displacement. 
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6.4.2.3 Test position 2 without reinforcement bar  
 

 

 

 
without reinforcement bar 

 

 

Figure 139.  Load-displacement curves of PT3A, PT5A, PT3C, PT4C specimens Test Position 2 
(cross-head speed: 1 mm/min). 

 

This test is representative of the wind pressure acting on the window. 

 

For specimen PT3A the T-joint accessory (P2090) starts to fracture at 100 N and 

brakes completely for a 57 mm displacement (test stopped). Specimen PT5A is 

very similar; however, the P2090 fracture occurs for a slightly lower force and 

brakes completely at 62 mm of displacement. 

 

The bonded T-Joint specimen PT4C (pink line) registers a load of 90 N when the 

T-joint accessory (P2090) starts to lift from the base (P2000) for a 7 mm 

displacement. The bond cohesive failure occurs at 150 N for a displacement of 30 

to 35 mm. The red line representing PT3C specimen is very similar to PT4C, 

registering a lower load for the cohesive failure (125 N). 
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6.4.2.4 Test position 2 with reinforcement bar  
 

 

 
with reinforcement bar 

 

 

 
Test Position 2 Figure 140.  Load-displacement curves of PT3AR, PT4AR, PT3CR, PT4CR specimens 

(cross-head speed: 1 mm/min). 

 

The dark and light blue lines in the graph of figure 144 represent the screwed T-

joints (PT3AR and PT4AR). This figure shows that they start to deform between 

60N and 100N and the T-joint accessory (P2090) fractures for a displacement of 

35 mm.  
 

 
The red line representing the bonded T-joint specimens is quite different. PT3CR 

test is not plotted due to data acquisition problems. The PT4CR test shows a first 

drop at 600 N, when the T-joint accessory (P2090) starts to lift from the base 

(P2000). The second drop occurs at 400 N with a 30 mm displacement and is due 

to the cohesive failure of the bonded joint. 
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6.4.2.5 Test position 3 without reinforcement bar  
 

 

 

 
without reinforcement bar 

 

 

Figure 141.  Load-displacement curves of PT4A, PT6A, PT5C and PT6C specimens Test Position 3 
(cross-head speed: 1 mm/min). 

The red and pink lines in the graph of figure 141 represent the adhesive bonded 

T-joints (PT5C and PT6C). The maximum load for PT5C occurs at 250 N and 

corresponds to the adhesive failure, for a displacement of approximately 20 mm. 

The same fracture occurs at 100 N for PT6C (pink line) for a displacement of 10 

mm. 

The mechanically fastened T-joints are plotted in dark blue (PT4A) and light blue 

(PT6A). The first drop occurs at 150 N when the T-joint accessory (P2090) starts 

to lift from the base (P2000). At 200 N (light blue – PT6A) or at 225 N (dark blue – 

PT4A), the T-joint accessory (P2090) fracture occurs for a displacement of 30 

mm. 

 

Test position 3 with reinforcement was not done because of a lack of time and its 

lower relevance when compared to the other tests.  
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Table 26. Failure loads for each test. 

file Te
st

 
po

si
tio

n 

R
ei

nf
or

ce
d 

te
st

 T-joint type of 
fastening 

Failure 
load [N] 

 

      
PT1AR.Dat 1 R screws 800 
PT2AR.Dat 1 R screws 1100 
PT1CR.Dat 1 R Araldite 2021 800 
PT2CR.Dat 1 R Araldite 2021 1000 
PT3AR.Dat 2 R screws 100 
PT4AR.Dat 2 R screws 100 
PT3CR.Dat 2 R Araldite 2021 - 
PT4CR.Dat 2 R Araldite 2021 400 
PT1A.Dat 1 - screws 200 
PT2A.Dat 1 - screws 550 
PT1C.Dat 1 - Araldite 2021 1100 
PT2C.Dat 1 - Araldite 2021 1000 
PT3A.Dat 2 - screws 100 
PT5A.Dat 2 - screws 100 
PT3C.Dat 2 - Araldite 2021 125 
PT4C.Dat 2 - Araldite 2021 150 
PT4A.Dat 3 - screws 160 
PT6A.Dat 3 - screws 200 
PT5C.Dat 3 - Araldite 2021 250 
PT6C.Dat 3 - Araldite 2021 100 
     
     
     
     
     
     

 

 

Table 26 summarizes the failure load for each case making it easy to compare. 

Conclusions 

This preliminary tests show that adhesive joints have a similar or better (position 

1, without reinforcement for example) load bearing capacity than the fastened 

joints. Note that the design of the joint is not the best in terms of adhesive 

bonding. No alteration was made to the parts that are designed for a mechanical 

connection. If adhesion bonding was to be used, the T-joint accessory geometry 

could be optimised to reduce the stress concentrations in the adhesive. This is 

done theoretically in the next section with a finite element analysis. 

It is also remarkable that complete structural rupture does not occurs in both 

kinds of joints (fastened and adhesive bonded). The T-joints are damage tolerant, 

having a very good performance in terms of safety. 
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5.5 Finite element analysis 
 

At this point, the adhesive and adherend mechanical properties are known and 

the T-Joint specimen geometry is defined. A finite element analysis was carried 

out to obtain a predictive solution of the T-joints tested and optimize the stress 

distribution by changing the joint design. 
 

The preprocessing program FEMAP v.8.3 was used to generate the geometry 

and the mesh. ABAQUS v.6.5 was used to compute the results and plot the 

stress distribution (post processing work). 

 

 
 

Figure 142.  Model of the T-Joint specimen. 

 

Figure 135 shows the 3D model of the T-joints. A three dimensional analysis was 

preferred because a two dimensional analysis was not realistic to simulate the 

complexity of the base profile. It is a complex problem, dealing with 3 different 

materials (PVC, steel and adhesive) in contact. 

Two models were studied: the fastened T-joint and the adhesive bonded T-joint. 

 

To obtain the best model for this study a contact pair was defined between P790 

and P2000 as shown in figure 145. This contact pair was defined in the interaction 

menu (figures 144 and 145), with an adjustment tolerance of 0.2 mm between the 

red (master surface) and the pink (slave surface) surfaces.  
 

PVC 
(P2090) PVC 

(P2000) 

Steel 
(P790) 
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Figure 145.  ABAQUS interaction contact pair (surface-to-surface) definition menu 

 
 
 
 

 

Figure 143.  Surface 

Interaction tool icon 

 
 

Figure 144.  Model database with the interaction in display (ABAQUS). 
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Once again, nonlinear geometry (Nlgeom) was considered to include the 

nonlinear effects of large deformations and displacements. 

 
An AMD Athlon 1300 Mhz processor with 512 MB DDRAM was used for the 

processing. The computing time took approximately 3 minutes for each case. 

 

5.5.1 Fastened (with screws) model 
 
The screws were modeled as beams, which is an option recommended by 

Abaqus to simplify the problem (figure 147). They were defined between two 

points joining three layers (P2090, P2000 and P790) as shown in figure 149. 

 

 
Figure 146.  Fastening by layer scheme (ABAQUS Manual). Figure 147.  Screw modeled as a beam 

(ABAQUS). 

 

 
 

Figure 148.  ABAQUS conector property menu. Figure 149.  Beam connection between two points (through 3 layers). 
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Figure 148 shows the connector menu where three parameters should be 

introduced: the connector property (defining the type as beam) and the two points 

(sequence) to define the intended screw orientation. 

 

 
Figure 150.  Model database with the connectors in display (ABAQUS). 

 

The previous definitions resulted in the fallowing joint geometry, where the 

fasteners are shown. 

 

 

 
  

 

 

 
Figure 151.  Several views for the T-joint fastened geometry. 
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5.5.2 Bonded model 
 

Instead of the mechanical fasteners, the P290 accessory was adhesively bonded 

to the base profile (P2000). A partition was created as shown in figure 152. The 

adhesive was given the properties of Araldite® 2021™ , determined previously in 

chapter 5. 

 

 
Figure 152.  Section definition for the adhesive bonded model. 

 

 

 

 

 

To simulate the load on the transom in position 1, a distributed load of  

21 mmN  
[ ]
[ ]⎟⎟⎠

⎞
⎜⎜
⎝

⎛
× 23721
800

mm
N

 was applied to the side of P2090 accessory, as 

shown in figure 153.  

 

Position 1 was chosen because it allows creating a different T-joint design due to 

less geometrical constraints than positions 2 and 3. 

 

 

 

 

 

 

Figure 153.  Areas of loading in 

P2090 accessory. 
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5.5.3 Mesh and boundary condition 
 

After defining a Tet (tetrahedral) element shape (figure 154) with an approximate 

global seed size of 5, with curvature control and deviation factor of 0.1 (figure 

155), the mesh was applied as shown in figure 157. 

 

  
Figure 154.   ABAQUS mesh controls menu. Figure 155.  ABAQUS Global Seeds menu. 

 

 
Figure 156.  ABAQUS element type menu. 
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The element type was chosen from the 3D stress family as C3D4 – 4-node linear 

tetrahedron stress/ displacement element defined in figure 156. 

 
Figure 157.  Mesh exterior and interior T-joint model views. 

 

The boundary condition definitions are shown in the next figure. They simulate the 

case of a test with the reinforcement bar. 

 

 
Figure 158.  ABAQUS boundary condition. 

 

5.5.4 Results 
 

 

Contour plots of various components of stress are presented next for each model 

for comparison purposes. 
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Figure 159.  Fastened model stress distribution (Von Mises). 

 
Figure 160.  Bonded model stress distribution (Von Mises). 

Figure 159 and 161 show that for the fastened joint, the T-joint accessory (P2090) is critically 

loaded at the base, which is in accordance with the experimental tests. The bonded joint 

(figure 160 and 162) also presents a stress concentration in the T-joint accessory (P2090). 

However, the experiments show that failure occurred in the adhesive. Therefore, the 

adhesive stress distribution should be analysed with more detail. 
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Figure 161.  Fastened T-accessory (P2090) Von Mises stress contour. 

Figure 162.  Bonded T-accessory (P2090) Von Mises stress contour. 
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Figure 163.  Adhesive Von Mises stress contour in the bonded model. 

 
Figure 164.  Adhesive Von Mises stress contour in the bonded model after mesh refinement. 

Figures 163 and 164 show the Von Mises stress contour in the adhesive layer. A mesh 

refinement was carried out due to the high stress concentration as shown in figure 164. The 

maximum Von Mises stress in the adhesive is 5.80 MPa whereas in the PVC it is 5.30 MPa 

(see figure 162). Since the adhesive strength is 25 MPa and that of PVC is 45 MPa, the 

adhesive will break before the PVC. This confirms the experimental tests, where the failure 
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occurred in the adhesive. The experiments also indicated that the adhesive failed by peel, at 

the end of the T- joint accessory (P2090) base. Therefore, the normal stress distribution (σ22) 

is an important stress component to analyse. 

 

Figure 165.  Normal stress (σ22) contour  in the adhesive layer. 

 

Figure 165 shows the normal stress (σ22)  in the adhesive, where the peak occurs 

at the extremities with 5.34 MPa. This is in accordance with the experiments. 
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5.5.5 New design proposal 
 

In order to reduce the adhesive stress concentration, the geometry of the T-joint 

accessory was modified as shown in figures 166, 167 and 168. These designs 

were proposed by Adams [50] to decrease the peel stress in the adhesive for lap 

joints. 

 

 

  
Figure 166.  Design 1 – Adhesive fillet. Figure 167.  Design 2 – Adhesive fillet and outside taper in 

T-joint accessory. 

 

 

Figure 168.  Design 3 - Inside taper in T-joint accessory and  with adhesive fillet (β = 30º and α = 60º). 

 

The adhesive fillet creates a smoother load transmission from the base profile to 

the T-accessory and the taper decreases the joint stiffness. 

 

 

The mesh and boundary conditions are identical to the basic design described 

previously. 
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Running the computational calculus allowed to plot the following figures reflecting 

the stress distribution for the new design proposals. 

 

Figure 169.  Adhesive Von Mises stress contour for design 1. Figure 170.  Adhesive Von Mises stress contour for design 2. 

  

 
Figure 171.  Adhesive Von Mises stress contour for design 3. 

 

Figures 169, 170 and 171 show a progressive reduction in the maximal values of 

the Von Mises stress. This decrease from 5.80 MPa (initial design) to 4.14 MPa 

for design 3 (figure 171), represents a reduction of nearly 30%. The peel stress 

(σ22) was also analysed and the results are presented in figures 172, 173 and 

174. 
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Figure 172.  Normal stress (σ22) stress contour for design 1. Figure 173.  Normal stress (σ22) stress contour for design 2. 

  

 
Figure 174.  Normal stress (σ22) stress contour for design 3. 

 

 

As for the Von Mises stress, there is a reduction in the maximal values. When 

compared to the initial solution (figure 165), the normal stress (σ22) reduction is 

approximately 30%.  
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Table 27 summarizes the results obtained for the basic design and the proposed 

designs for adhesive stress reduction. 

 

 

Table 27. Stress values for each design and initial bond (in the adhesive layer) 

FEM MODEL Max Von Mises 
[MPa] 

Max σ22 
 [MPa] 

   
Initial (Bonded) 5.80 5.40 

   
Design 1 (Bonded) 4.96 4.34 

   
Design 2 (Bonded) 4.52 3.37 

   
Design 3 (Bonded) 4.14 3.68 

 

 

 

Table 27 shows that design 2 and design 3 provide an important improvement 

and will give an increased joint strength.The adhesive joint will have a clearly 

higher strength than the fastened joint and will therefore justify its use in terms of 

load bearing capacity. 

 

Note that this finite element study was carried out only for position 1. The other 

positions should also be analysed to have an optimised solution for every type of 

loading. 
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COST AND PROCESS ANALYSIS 

7.1 Introduction  
 

Nowadays, the industrial world is ruled by successful business rates and 

optimised profit margins. Production costs play a vital role and their reduction is a 

major goal. 

This study would not be complete without a cost analysis for each solution 

(welded, screwed and glued) and a process comparison in industrial terms – time 

consumption, tools and workforce. 

In this chapter, some considerations will be made about the industrial processes 

and then, the costs will be calculated for each technique. 

7.2 Production Processes  
 

There are at least four processes to produce this union (T-Joint) of profiles: 

welding, mechanical fastening with accessory (P2090), a mechanical 

attachment with accessory (P3270) placed with a tool (P3276 and 3278) and 

adhesive bonding.  

There are several points to consider: 

1. Time consumption; 

2. Required tools; 

3. Surface finish aspect; 

4. Sealing properties; 

5. Risk assessment. 

7.2.1 Time consumption 
 
In terms of the V welding process, there is the need to mill a V shape in the 

P2030 profile and also in the base profile P2000. Then the parts are welded in a 

special machine. The excess of material is removed after the part has cooled 

down to room temperature. This operation needs in total 8 minutes. 

C h a p t e r s e v e n
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When fasteners and mechanical accessories are used, there is the need to mill 

the profile P2030 ends to fit P2000, place the accessory P2090 inside P2030 

and screw 4 fasteners (see figure 176), and place it over P2000 and screw 4 

other fasteners. This takes approximately 5 to 6 minutes. However,  to obtain a 

good sealing, silicone must be applied over the joint perimeter, adding 1 or 2 

more minutes. The overall process takes 6 to 8 minutes. 

The future solution with the accessory P3270 (figure 175), placed with a tool 

(P3276 and 3278) should take nearly the same time, because there is the need 

to mill, drill and then place the accessory with the tool and finally apply silicone. 

With the structural adhesive joint the profile P2030 ends are milled and the 

adhesive is applied on the top. Adhesive is applied over the lateral surfaces of 

the accessory P2090 which is inserted in P2030. Then more adhesive is applied 

over the P2090 base. Finally P2030 and P2090 are placed over the P2000 

profile. In the case of adhesive bonding, there is no need to apply silicone, due 

to the sealant properties of the adhesive. This process takes approximately 6 

minutes. 

7.2.2 Required tools 
 
To weld the PVC, a specialized welding machine is necessary which is very 

costly, but profitable for big production rates. Mechanically fastened joints 

require common fastening screw machines, and silicone handgun for sealing. In 

the case of an adhesive joint, the cheapest solution is a handgun. For greater 

production rates a pneumatic handgun can be used. 

 
Figure 175.  Accessory P3270. 

 
Figure 176.  T-joint assembly (with screws).  
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7.2.4 Surface finish aspect 
 
The welding option has a very good finish aspect (figure 178), but the 

mechanical fastening with screws leave the screws visible (figure 176), creating 

a joint finish with a raw aspect. The joint with adhesive has the best aspect once 

the adhesive excess have been removed. Figure 177 shows an adhesive joint 

before removing the excess of adhesive. 

7.2.5 Sealing properties 
 
This aspect is very important because the purpose of a window is to be a 

sealing element of the house perimeter.  

Once again, welding is the optimal solution that guarantees material continuity 

and integrity. When screws are used, the profile is drilled and leaves a gap that 

must be sealed with silicone. Even so, this is not the best sealing solution. 

An adhesive joint union does not imply drilling the profile, which represents an 

advantage, and its sealant properties are quite good because it is a 

methacrylate adhesive.  

 

7.2.6 Risk assessment 
 
In an industrial environment, there are many risks at stake that should be noted 

and accounted to fairly compare the different options. 

Welding is very safe in general, but there is always the possibility of burns 

because it involves temperatures near 250 ºC. 

In the case of fastening solutions with screws, there is the danger to handle 

incorrectly the tools and cause some injuries, but it is improbable. 

As regarding adhesive bonding, adhesives are chemical products that have 

some toxicity if ingested, skin absorbed or breathed and are often inflammable. 

Araldite® 2021™ is composed of two components and each one has its security 

sheet (see appendix VI). Basically, it is inflammable, it can cause eye and skin 

irritation as well as respiratory problems. 

 

 

 
Figure 177.  Adhesive Joint 

without excess of adhesive 

removal. 

 
Figure 178.  Welded joint. 
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7.3 Cost analysis 
 
 

The costs corresponding to manufacture the joint were calculated for each 

solution. 

Welding technology involves the acquisition of a welding machine as seen 

earlier in the required tools, and implies a great amount of electric energy to 

maintain the temperature operational at nearly 250ºC. This compromises 

seriously the efficiency of this process and its environmental friendliness. The 

process needs cleaning after welding, which implies more machinery. However, 

it is the only process that requires no accessories. 

 

Table 28. Welding process cost. 

Tool/ machine investment Welding machine 15000€ +
 

Energy consumption Electricity 0.75€
Materials 0€

(cost for each joint*) Total 0.75€ 
* Without the contribution of tool/machine investment  

The mechanically fastened joint requires mostly screws, which nowadays are 

very cheap. To seal there is the need to use silicone, which introduces one 

more product and its associated costs. The mechanical joint also needs the 

accessory P2090. The machine used to fasten the screws is a pneumatic screw 

driver. 

 

Table 29. Mechanical fastening cost. 

Tool/machine investment  150€

  

Energy consumption Electricity 0.25€
Materials 6 screws 0.2232€
 Silicone 0.25€
 P2090 1.54€

(cost for each joint*) Total 2.51€ 
* Without the contribution of tool/machine investment  

 

The future mechanical joint requires an initial investment in tools (P3278 and 

3276) and a costly accessory (P3270) when compared to P2090. There is also 

the need to add silicone. 
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Table 30. Mechanical joint with P3270 cost. 

Tool/machine investment P3278 + P3276  56.61€ + 134.39€
  
Energy consumption Electricity 0.25€
Materials P3270 2.74€
 Silicone 0.25€

(cost for each joint*) Total 3.24€ 
* Without the contribution of tool/machine investment  

 

The adhesive joint requires the investment in tools, but it can be adapted to 

industrial production. In case of low production rates (characteristic of small 

factories) a cheap tool is used. For high production rates (characteristic of big 

factories) a pneumatic tool  is used, which is a little more expensive. 

Araldite® 2021™ is supplied in 50 ml or 400 ml cartridges. The 50 ml cartridges 

(costing 0.355 €/ml) are applied with the less expensive handgun while the 

400ml cartridges (costing 0.133 €/ml ) are applied with the pneumatic handgun.  

 

Each joint requires nearly 12,5 ml of Araldite® 2021™ per joint (50 ml cartridge 

is enough for 4 joints). This value already contemplates the initial waste 

recommended by Huntsman®. 

 

Table 31. Adhesive joint cost. 

  50 ml 400 ml 
    
Tool/machine investment Handgun 20€ 600€ 
    
Energy consumption Electricity 0€ 0.25€ 
Materials Araldite® 2021™ 4.43€ 1.66€ 

 P2090 1,54 € 
(cost for each joint*) Total 5.97€ 2.45€ 

* Without the contribution of tool/machine investment  

 

Notice that all the previous costs do not consider any waste that occur other 

than the advisable by the suppliers. Further studies should be done to assess 

the real cost for waste, contemplating a margin for it. 

 

Table 32 summarizes the previous four tables. 
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Table 32. Joint costs summary. 

 

 Welding Mechanical 
(Screws) 

Mechanical 
(P3270) 

Adhesive Araldite 2021 
50 ml / 400 ml 

Costs € 

Tool/machine 
investment 15000+ 150 350 20 600 

Energy consumption 0.75 0.25 0.25 0 0.25 

Materials 0 2,31 2,99 5,97 2.20 

      

 
 

To summarize this chapter, the next table aggregates all the major cons and 

pros of these processes. 

 

Table 33. Comparison between the several joint processes. 

 Welding Mechanical 
(Screws) 

Mechanical 
(P3270) 

Adhesive Araldite 2021 
50 ml / 400 ml 

Time consumption [min.] 8 6-8 6-8 6 

Required Tools ++++ ++ +++ + ++ 

Surface finish aspect ideal bad good good 

Sealing properties ideal bad bad good 

Risk assessment considerable low low considerable 

Post-process cleaning silicone silicone cleaning 
 

+++ Extremely  expensive  +++ Very expensive  ++ expensive  + cheap 
 

Welding seems to be the best solution to join the transom with the base profile. 

However, residual stresses and the investment in machinery have been 

considered by the industry to be not practical, leading to the use of mechanical 

joining solutions. Comparing the mechanical solutions (screws fastening and 

P3270 mechanical fastening) with the adhesive bonding solution (when 

industrialized (400 ml)), proposed in this study, the last one proves to be a 

competitive solution.  
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8.1 Conclusion 
 

The tensile bulk adhesive tests and the single lap joint tests show that a 

toughened methacrylate is ideal for PVC application. The adhesive and 

cohesive properties of the adhesive are such that the failure takes place away 

from the joint area, in the PVC.  

The weathering tests on SLJs and adhesive bulk specimens show that the 

adhesive has a better environmental resistance than the PVC. Therefore, the 

adhesive is not only adequate for initial strength but also for long term strength. 

The preliminary static T-joint tests show that the adhesive joint is comparable or 

better to a fastened joint in terms of load bearing capacity. The optimization of 

the T-joint geometry for adhesive bonding indicates that strength can be 

increased. This reinforces the use of adhesive bonding in terms of mechanical 

behavior. However, this theoretical optimization needs confirmation with 

experimental tests. 

The cost analysis comparison for the proposed adhesive T-joint solution proved 

to be in its favor. Therefore, it can be considered to have industrial application, 

and if so, it would certainly bring large scale economy savings. 

This work as evolved from an industrial design point of view to an engineering 

approach, into the search for the best solution.  

 

 

 

 

 

 

C h a p t e r  e i g h t
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8.2 Future Work 
 
 

Despite all the work done in this study, the research of the best solution for the 

PVC transom to windowframe T-Joint bonding is far from being complete.  

 

1. Additional testing should be done to validate experimentally the T-

joint optimization by FEA.  

2. Position 2 and 3 should also be considered.  

3. The weathering tests should be carried out with a longer timeframe 

in order to fully characterize the joint lifetime and the U.V. radiation 

should be included.  

4. The adhesive application in the T-Joint should also be improved in 

order to minimize the adhesive waste and the cleaning of the joint. 

5. The ultimate test will be the application of this adhesive joint in its 

work environment hopefully for several decades.  
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