
Proposta para concurso de escultura

INTERFACES

Classe: Mistura de materiais

Autor: Filipe J.P. Chaves

Índice

Introdução	1
Aspectos construtivos	3
Custos	6
Atravancamentos gerais	9
Informação relativa ao autor	10

<u>Introdução</u>

Tendo em conta a natureza tecnológica do INEGI, e a sua função de **interface** enquanto promotor de transferência de tecnologia entre a ciência e investigação desenvolvida na Faculdade de Engenharia e o tecido industrial, nacional e internacional, procurei transmitir na escultura a ideia de interface. Desta forma, a escultura proposta, procura representar a evolução dos materiais metálicos passando pelos polímeros até aos compósitos. Assim, o primeiro dos três cubos (em baixo) é revestido de aço (chapa corten) , o segundo cubo será revestido com chapas de acrílico branco e o terceiro cubo (superior) é revestido com chapas de fibra de carbono. Também pode ser entendida, como a interface (cubo branco) entre a indústria (cubo metálico) "com os pés bem assentes na terra" (base metálica) e a excelência da investigação desenvolvida na Faculdade de Engenharia / Idmec (cubo superior em fibra de carbono).

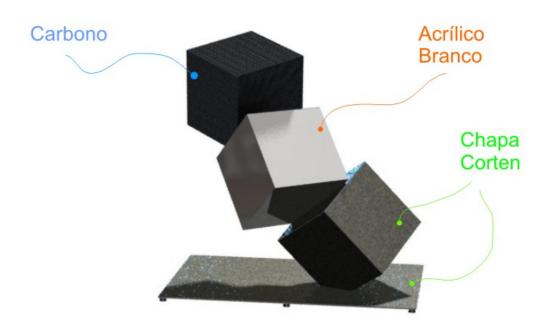


Figura 1. Escultura

Atribuo especial relevo às intercepções das faces e ligações dos cubos entre si, representando interfaces de conjunto, numa composição dinâmica com os cubos em diferentes posições e "atitudes" perante o observador. Este conceito conduziu à escolha do nome para a escultura: **INTERFACES**.

Aspectos construtivos:

A escultura é composta por dois grandes elementos estruturais:

- 1- Base em chapa corten de 8 mm de espessura (1500x1100 mm);
- 2- Corpo tosco metálico, composto por três cubos (de lado 500 mm) em chapa soldada. O cubo inferior tem uma face de ligação com quatro furos para aparafusar à base, tendo uma face aberta para permitir o acesso aos parafusos. Nesta face aberta, existem quatro placas soldadas, com furo roscado, onde será aparafusado o segundo cubo. O segundo e cubo, está soldado também com uma face que vai aparafusar nas placas roscadas do cubo inferior, fazendo o fecho deste. O segundo cubo, tem também uma face aberta, com as placas roscadas que permitem fixar o terceiro cubo que será fechado com uma face (chapa) aparafusada às quatro placas roscadas.

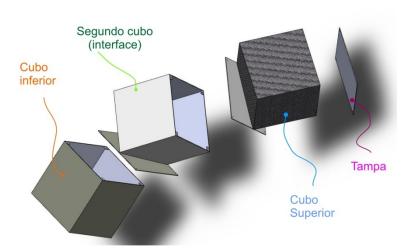


Figura 2. Cubos (imagem explodida)

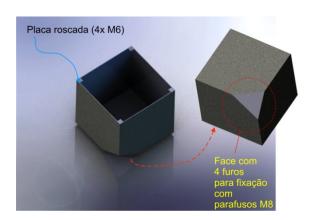


Figura 3. Cubo inferior.

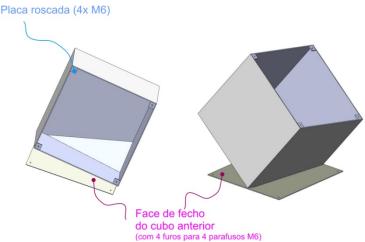


Figura 4. Segundo e terceiro cubos.

Os cubos são fabricados em faces de chapa de aço de 4 mm, unidas através de soldadura (bastando pingar). Esta solução resulta num tosco com um acabamentos fracos. Para obter um acabamento mais atraente, proponho "encamisar" os cubos com:

- a) Chapas corten de 3 mm aparafusadas às 6 faces do cubo inferior;
- b) Chapas de acrílico de 3 mm coladas com Araldite 2021 às 6 faces do segundo cubo;
- c) Chapas de carbono (fabricadas no INEGI) e coladas com Araldite 2015 às 6 faces do cubo superior.

Para permitir um bom alinhamento, existem tacos roscados entre os cubos e as chapas de revestimento, que permitem aparafusar ou colar as chapas dos três diferentes materiais.

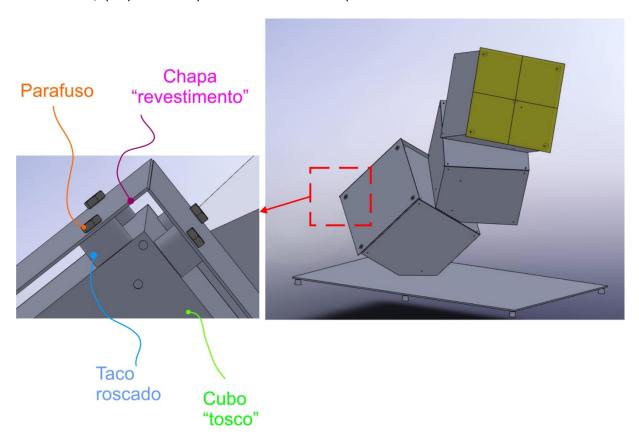


Figura 5. Detalhe construtivo da solução para revestimento (à esquerda).

Estas ligações procuram também transmitir a ideia do desenvolvimento das uniões mecânicas, desde os parafusos que ficarão com a cabeça visível no cubo inferior até à solução "invisível" dos adesivos estruturais da Araldite nos restantes cubos.

As chapas de corten e de acrílico terão dimensões de 535 mm para fazer a união perfeita nos cantos e serão recortadas para acompanhar a geometria. Proponho a utilização da chapa corten, devido à forma como oxida. A "ferrugem" da chapa corten é "aveludada", transmitindo um aspecto mais agradável à vista. As chapas de fibra de carbono terão que ser adaptadas ao tamanho da prensa existente no INEGI (proponho quadrados com 275 mm de lado).

Por último, proponho a utilização de tacos de borracha aparafusados à base para permitir o nivelamento da escultura e evitar efeitos de corrosão e contaminação do chão.

A escultura tem também a vantagem de ser possível montar e desmontar para facilitar o transporte e a instalação.

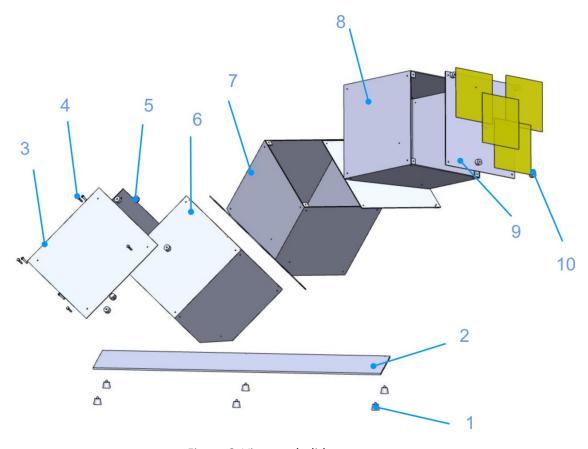


Figura 6. Vista explodida.

Pos	Designação	Material	Qtd.
1	Taco de borracha	Borracha/rosca M8	6
2	Chapa de base	Corten e=8 mm	1 (1500x1100 mm)
3	Chapa revestimento corten	Corten e=3 mm	6 (535 x 535 mm)
4	Parafusos	M6 x 16 – 8.8	24
5	Taco roscado	Aço macio	24
6	Cubo inferior	Chapa de aço e=4 mm	1
7	Cubo intermédio	Chapa de aço e=4 mm	1
8	Cubo superior	Chapa de aço e=4 mm	1
9	Tampa superior	Chapa de aço e=4 mm	1
10	Placa de fibra de carbono	Fibra de carbono	24
	Chapa de Acrílico Branco	Acrílico	6 (535 x 535 mm)
	Taco para colagem	Aço macio	54
	Parafusos de ligação à base	M8 x 30 – 8.8	4

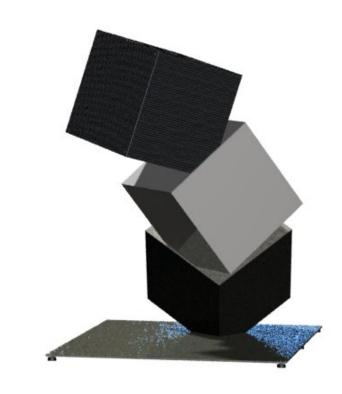
Custos:

Corpo, base metálica e acessórios (parafusos, tacos roscados e tacos de borracha), avalio um custo de 3€ / Kg. Tendo em conta um peso de 400 Kg, resultarão cerca de 1000 €.

O adesivo da Araldite rondará os 150 €.

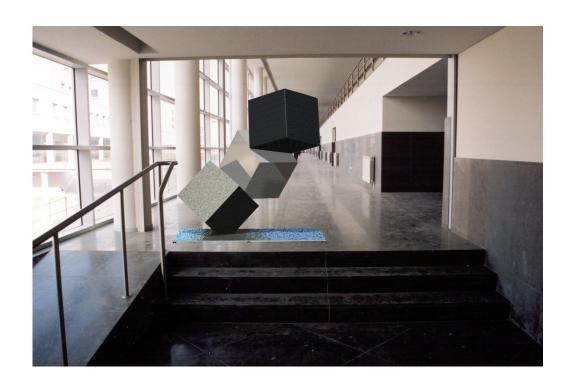
A chapa de acrílico custa cerca de 100 €.

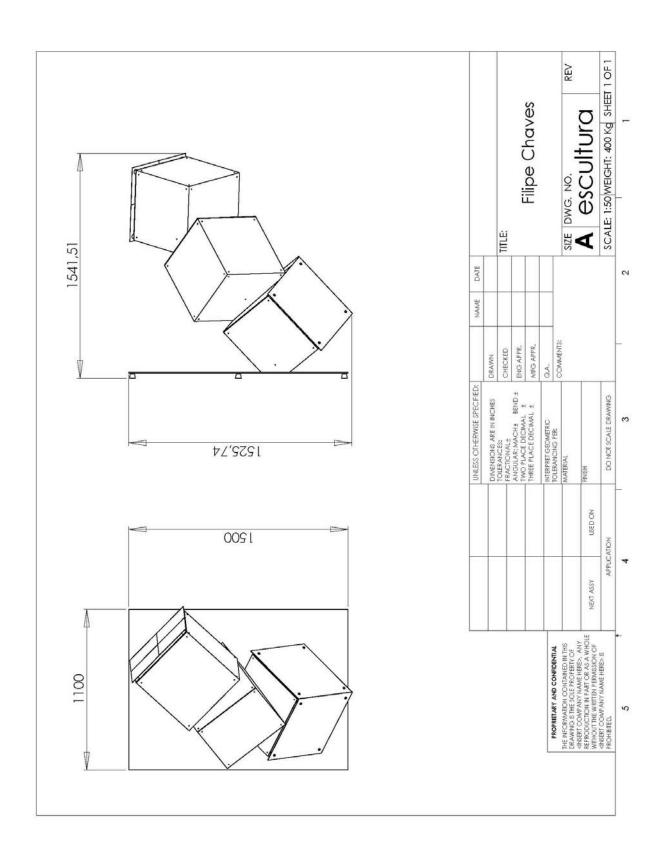
As chapas em carbono com uma área de 3,6 m² (0,6 x 6 faces), rondarão os 115 € por camada (considerando 32€/m²). Assumindo 3 camadas resultarão 345 €.


Em resumo, teremos:

Tosco metálico	 1.000€
Adesivo	 150€
Chapa Acrílico	 100€
Chapas de Carbono	 345€
TOTAL	 1.595 €

Apresento de seguida várias vistas da escultura proposta, obtidas a partir de renders do solidworks. (A escultura está toda projectada em Soldiworks com acessórios e sua montagem).





Atravancamentos gerais

Informação relativa ao autor

Curriculum Vitae

Filipe José Palhares Chaves

Data de Nascimento 28 de Abril de 1978

B.I. 11204150

Estado Civil Solteiro

Nacionalidade Portuguesa

Morada

Praceta António Sérgio 101 , 2º Esq. 4450 Matosinhos

E-mail

chaves.filipe@fe.up.pt filipe chaves@msn.com

Telefone 22 9382619

Telemóvel 91 4957984

Contribunte N.º 216427614

Carta de Condução P-1128093

CV - Filipe José Palhares Chaves

Habilitações Académicas

2007	Conclusão do primeiro ano (probatório) do doutoramento em
	engenharia mecânica na FEUP.

- 2006 Conclusão da segunda edição do curso de empreendedorismo da Escola de Gestão do Porto (EGP), e classificação de Bom.
- 2006 Conclusão do Mestrado em Design Industrial, com a dissertação "Application of Adhesive Bonding in PVC Windows" e classificação final de Muito Bom por unanimidade.
- 03-04 Conclusão da parte escolar do Mestrado em Design Industrial na F.E.U.P. (Faculdade de Engenharia da Universidade do Porto) com classificação final de Muito Bom (16 valores).
- 96-02 Licenciatura em Engenharia Mecânica, opção de Projecto de Máquinas na F.E.U.P. (Faculdade de Engenharia da Universidade do Porto), com a média final de 13 valores.
- 93-96 Curso Secundário do Agrupamento II (Artes) Carácter Geral, na Escola Secundária de Augusto Gomes em Matosinhos,com a média final de 18 valores.

Formação Profissional

- 2005 Curso de Formação Pedagógica Inicial de Formadores na Edincra, com classificação final de Bom.
- 93-94 Curso Master de Computação Gráfica (AutoCad V.12 e 3D-Studio) na Unicenter, com a média geral de 97%.

Resumo Profissional

Coordenação dos Sistemas de Informação da decafil PVC Caixilharia, Lda. Criação e implementação da página comercial da mesma empresa www.decafil.pt. Desenvolvimento de catálogos técnicos e comerciais de caixilharia de PVC.

Concepção do *stand* para a Concreta 2005 da empresa Coprisnor Serviço de isolamento Renovação de Edifícios, Lda. Assessoria de imagem corporativa e sistemas de informação para a mesma empresa.

Engenheiro projectista no Gabinete de Estudos e Projectos da empresa Boavida Portugal, Lda, a partir de Maio de 2006.

Investigador a tempo parcial no IDMEC, desde Setembro de 2006.

Conhecimentos de Informática

Microsoft Windows, Office, Frontpage, CorelDraw, AutoCAD, 3D-Studio, SolidWorks, CosmoWorks, ANSYS, Abaqus V6.5, CATIA V5R12, Rhinoceros, Macromedia Flash, Freehand, Primavera, IDEP Cn8, Socrates, Gestock, PrefGest e PrefCad.

Informações Complementares

Bom conhecimento da lingua Inglesa, escrita e falada. Conhecimento razoável da lingua francesa, escrita e falada e também Espanhol (Castelhano/Galego) e Italiano. Curso de iniciação à lingua Alemã (G1), pelo Goethe Institut.